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Résumé - Les caractéristiques de structures d'isolation LOCOS semi-enterré et
LOCOS enterré ont été analysées. En particuliers, les simulations
bidimensionnelles couplées de technologie et de dispositif, réalisées avec le
logiciel IMPACT, ont démontré 1'influence de 1l'interface Si/Si0 , sur les
performances d'isolation. Un excellent accord simulation-expérimentation a été
trouvé pour les structures étudiées.

Abstract =~ Electrical characteristics of gemi-recessed and fully-recessed LOCOS
isolation techniques are analyzed. Two-dimensionnal process/device simulations,
performed with the IMPACT package, have demonstrated the effect of the 5i/Si0,
interface shape on isolation efficiency. An excellent agreement has been found
between simulations and measurements for the studied structures.

I - INTRODUCTION

Device isolation presents critical aspects for circuit packing density in VLSI.
LOCal Oxidation of Silicon (LOCOS) is classically limited by the bird's beak extension
and lateral diffusion of the channel stop region into active transistor area. Several
technological alternatives were proposed to control lateral growth of oxide, such as
SILO technique {Sealed Interface Local Oxidation} by using successive silicon nitride
and deposited oxide layers /1,2/. In order to evaluate a new isolation process,
numerous technological and device physics aspects have to be investigated to clarify
important two dimensional (2D) parasitic effects /3/. So the use of coupled
process/device simulations is of prime necessity. This paper proposes a comparison of
electrical performances for both semi and fully-recessed isolation structures by means
of process~device simulations and experimental results. A special attention has been
devoted to the bird's beak shape description to demonstrate the electrical implications
induced by geometrical effects. An advanced version of the IMPACT3 device simulator
- extended for isolation structure modeling linked to the IMPACT2 /4/ process simulator
was extensively used for two dimensional electrical analysis.

iI - PROCESS DESCRIPTION

Table I outlines the main characteristics of the isolation stuctures that has
been investigated. SEM cross-sectional views of both structures are shown in figure 1 .
For each of them, two versions have been fabricated:
- an aluminium gate version for which a 0.5 micron poly-silicate-glass (PSG) layer was
deposited prior the aluminium level. (figure 2)
~ a polysilicon gate version. In this case, the n* diffusion regions are self-aligned
to the polysilicon. A 550 A° thick oxide layer of about 3 microns long exists between
the field oxide mask and the edge of the poly mask. (figure 3)

IIXI - TISOLATION PROPERTIES

The major difference between the semi-rox and the full-rox structure is the
bird's beak shape. Because the junctions are shallower than the planar part of the
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Si/SiO2 interface, the oxide corners are incorporated into the channel region. Figures
4 and 5 show the potential variations along the interface for both structures with a
polysilicon gate. Differents barrier dJdeformations are observed when the gate bias
affects sufficiently the interface potential distribution. Indeed, the potential
barrier of the fully-recessed structure is then located under each bird's beak corner,
but remains spread over the whole field oxide interface in the case of the
semi-recessed structure. Because the current in the overall structure is controlled by
electron emission over the potential barrier at the source side, the fully-recessed
device shows better isolation properties than the semi-recessed one. This point is
illustrated by the ID-VG characteristics for both aluminium and polysilicon gates
(resp. figures 6 and 7). Notice that an excellent agreement is found between measured
and calculated drain currents that validates the simulation approach.

Further simulations have been carried out on 2 and 7 microns long aluminium gate
devices without the PSG layer, for a 5 volts drain bias condition., Characteristics
plotted in figure 8 demonstrates the sensitivity of the semi-recessed isolation
structure to the n* to n' spacing (L). By opposition, the fully-recessed structure does
not reveal this typical 1/L dependence in the subthreshold mode of operation. Indeed,
the effective channel 1length is in this case reduced to the curved part of the field
oxide interface and makes the whole parasitic transistor dominated by the two corner
devices.

IV - SENSIBILITY TO DIBL_ EFFECT

The simulations performed on a 2 microns long device have allowed to analyze the
effect of Drain Induced Barrier Lowering (DIBL) combined to the corner effect. The
drain bias modulates the potential distribution around the n * diffusion and first
affects the potential barrier in the corresponding region. As the curved part of the
interface located on the drain side requires more band bending to invert because of the
influence of the drain controlled depletion region, the channel is firstly formed in
the source region (figure 9). Figure 10 illustrates the potential distribution along
the interface for gate bias varying from O to 15 volts. This result shows, once again,
how the newly located potential barrier leads to a better immunity against the DIBL
effect, for the full-rox isolation structure.

CONCLUSION

The presented results obtained from coupled process-device analysis have outlined
the sensitivity of isolation structure to the field oxide shape. As the corner effect
provides better characteristics for threshold wvoltage, subthreshold slope and drain
voltage dependence, buried oxide isolation structures with sharpened corners appear as
a valuable solution for micron and submicron technologies. Moreover, the experimental
characteristics of the studied structures have revealed to be in good agreement with
two dimensional numerical modeling, and have proved the capabilities of the IMPACT
simulation tool to investiga.e physics of new isolation structures.
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FIGURE 1 : SEM CROSS-SECTIONAL VIEWS OF THE FIELD OXIDE EDGE
SEMI-RECESSED STRUCTURE FULLY-RECESSED STRUCURE

TABLE I

Semi-Rox .| Full-Rox
Structure | Structure

Field |2 10'3 cm2|2 10 '3cm?
Implant at 25 Kev at 25 Kev

Field 1600° ¢ 950° €
Oxidation 220 mn 370 mn
Oxide 716 nm- 735 nm

thickness
S/D implant|5 10 !'Scm~?|5 10 '5cm~2
at 140 Kev [at 140 Kev

Annealing 950° ¢ 950° C
45 mn 45 mn

4681 25KV %48,000 [108n WDIS 4281 25KV X40,080 188na HDI
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FIGURE 3 : POLYSILICON GATE STRUCTURES 2-D IMPURITIES EQUX-CONTOURS LINES
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FIGURE 4 : SEMI-ROX STRUCTURE FIGURE 5 : FULL-ROX STRUCTURE
INTERFACE POTENTIAL DISTRIBUTION FOR POLYSILICON GATE DEVICES ON DRAIN SIDE
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FIGURE 6 : ALUMINIUM GATE VERSION

FIGURE 7 : POLYSILICON GATE VERSION

SIMULATED AND MEASURED ID-VG CHARACTERISTICS
W/L= 100/20
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FIGURE 8 : CALCULATED ID-VG CURVES FOR DIFFERENT DEVICE LENGHTS
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FIGURE 10: ELECTRON DENSITY DISTRIBUTION DURING CHANNEL FORMATION
Vigurce™ O VoLt o V.= O volt , Vg, =5 volts
SEMI-ROX STRUCTURE : (&) V,, .= 5 volts , (B) V_,, = 15 volts
FULL-ROX STRUCTURE : (C) V = 5 volts , (D) Vg“e= 15 volts
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