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S. REYNAUD and E. GIACOBINO 
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Pierre et Marie Curie, 24, Rue Lhomond, F-75231 Paris Cedex 05, 
France 

Resum6 : I1 est bien connu que les syst+mes optiques bistables 
peuvent fournir des dtats "comprim6sU du champ blectromagnt5tique. On 
peut en principe atteindre une "compression" parfaite au voisinage du 
seuil de bistabilit6. Nous montrons que l'on peut calculer les 
fluctuations quantiques du champ 6mis par un traitement "classique" 
dans lequel toutefois les fluctuations du vide sont correctement 
prises en compte. L'avantage de cette approche est sa simplicit6 
conceptuelle qui permet de d6gager une interpretation physique claire 
des spectres de fluctuations pour la "compression optimale" et pour 
la rbduction du bruit d'intensit6. 

Abstract : It is known that optical bistable systems are capable of 
gener3ting squeezed states of light. Perfect squeezing can even be 
achieved near the bistability threshold. We show that it is possible 
to obtain the quantum fluctuations of the outgoing field by a 
"classical" treatment provided that the vacuum fluctuations n r u  
properly accounted for. This appraach allows us to give a simple 
physical interpretation to the fluctuation spectra computed for 
optimum squeezing and for intensity squeezing. 

With fluctuations equal to the minimum allowed by quantum mechanics, 
Glauber's coherent states /1/ of the electromagnetic field have long been 
considered the least "noisy" light that one was able to produce. It is for 
example the case of the light emitted by a well stabilized laser in a noise 
frequency range far away enough from zero frequency. The quantum mechanical 
limit on the fluctuations of light stems from Heisenberg principle : the 
two quadrature components a and aZ of an electromagnetic field 
alcoswt + azsinwt are quantum mkchanical non commuting operators and their 
uncertaint y product has a lower limit. For a coherent state, these 
uncertainties on a, and az are equal, and equal to the allowed minimum. 
Squeezed states of light are also minimum uncertainty states, but are 
characterized by different quantum fluctuations on the two quadrature 
components. In principle the fluctuations on one of them can be made 
arbitrarily small, and for more than a decade, a large amount of 
theoretical work has been devoted to the search and study of processes 
(usually non linear interactions) transforming coherent light into squeezed 
light. 

Since 1985, several experiments have successfully prepared squeezed 
light /2-6/. Among the proposed processes, optical bistability has been 
theoretically predicted to yield squeezing : absorptive or dispersive 
bistability in a two level system /7-9/ was shown to give squeezing inside 
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the cavity. However, after it was realized that much better squeezing could 
be obtained outside the cavity /lo-12/, very good squeezing factors have 
been predicted near the bistability threshold /13-15/. Experiments /5/16/ 
have confirmed the existence of squeezing in the bistable regime. 

In this paper, we want to discuss of the physical origin of squeezing 
in optical bistability. We will concentrate on the simplest model, a pure 
Kerr medium placed inside a single ended ring cavity. 

I - A QUXLITATLVE PICTURE OF SQUEEZING IN OPTICAL BISTABLE SYSTEMS 

We consider a coherent field which enters an optical ring cavity containing 
a Kerr medium, whose index of refraction exhibits a linear dependence on 
che light intensity in the cavity. We shall use a phase space 
representation in which the coordinates are a, and a,, the quadrature 
components of the field a,coswt + a2sinwt. Because of the quantum 
uncertainty on al and a2, a field is represented by some probability 
distribution in phase space. For a coherent field, the fluctuations on the 
two quadratures are equal, the probability distribution has the shape of a 
disk (Fig. 1, (a)). 

Because o f  the interaction with the Kerr medium in the cavity, the 
field undergoes a phase rotation which depends on the intensity : all the 
parts of the disk are not rotated by the same amount and the probability 
distribution is distorted Fig. b 8 A few properties of the new 
probability distribution can be inferred very simply : 

i) che two extreme points (in the direction of the field amplitude) of 
the initial probability distribution M and N move on two circles centered 
on the origin (Fig. I), giving M' and N'. Since the rotation angles are 
different, the distance M'N' is greater than MN. But the probability 
distribution remains confined between the two circles, which means that the 
intensity distribution is not modified. 

ii) this geometrical transformation obviously conserves the area. Now, 
as one of the dimensions of the new probability distribution is increased 
(M'N'), another one has to be decreased. In other words, squeezing is 
expected on one particular quadrature component, corresponding to the 
smallest diameter of the probability distribution. 

iii) when one gets close to the bistability threshold, it is well 
known that a critical divergence of the fluctuations occurs : the larger 
dimension of the distribution goes to infinity, and so the smaller one goes 
to zero. 



In the next section, we present the calculations of the quantum 
fluctuations. We will see that they confirm our simple predictions for the 
noise frequency at w=O. In particular, since the photon number is conserved 
when measured over long times, no intensity squeezing can occur at w=O.  But 
we will see also that the intensity noise may be squeezed at some non zero 
frequencies. This effect is associated with a temporal redistribution of 
the incident photons on a time scale of the order of the cavity storage 
time. 

I1 - EQUATIONS FOR THE FIELD FLUCTUATIONS 

In the good cavity limit, the relationship between the incident field 
F'" and the intracavity field E (Fig. 2a) can be written as : 

where q is the round trip phase accumulated by the field in the cavity 
(including the effect of the Kerr medium) and 7 the cavity width connected 
to the reflexion and transmission amplitude coefficients r and t of the 
coupling mirror by : 

Denoting : 

X = I E ~ '  ; Y = IF'" 1 ' 

che intracavity and incident intensities, one gets the classical solution : 

which yields the usual bistability curve if cp exhibits a linear dependence 
on X (Fig. 2 b corresponds to (Po = - 57) : 

Y 

Kerr medium 

Fig. 2a Pig. 2b 

In the following, we will characterize a working point on the bistability 
dY 

curve by the slope parameter p = - . Derivating ( 4 )  with respect to X 
dX 
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gives a relationship between p and X : 

The vicinity of a bistability threshold wiil be associated to a positive 
value of p close to zero (negative values are associated to the unstable 
branch). 

The field fluctuations can be computed very simply using the 
following "semi-classical" approach 9 The dynamics of small 
fluctuations are described by linearizing the classical equations of motion 
in the vicinity of the stationnary working point (same procedure as in 
linear stability analysis). Then we consider that these field fluctuations 
are driven by the fluctuations of the incident field which enter the cavity 
through the coupling mirror. 

Taking the Fourier transforms of the field fluctuations, one gets in 
this manner the following linear relation : 

( 7 )  

with M =  ( - ~ m + ~ + r ( p + ~ f X  L FX 

-L f X - L W T + r - L y - t f X  1 ( 8 )  

where w is the noise frequency and T the round trip time (the mean field E 
has been chosen to be real). 

We now want to get the fluctuations of the output field F D U ' .  In order 
to get this field, one can simply write the usual transmission-reflexion 
equation on the coupling mirror assuming a high reflexion coefficient : 

Then the fluctuations of the output field are obtained by. eliminating the 
intracavity field : 

The transfer matrix (21~-'-1) contains all the information necessary 
to get the fluctuation spectra. For example, the optimum squeezing, that is 
to say the smallest diameter of the probability distribution, can be 
obtained as : 

where h is the smaller eigenvalue of the transfer matrix. The intensity 
squeezing can be computed by writing the fluctuations of the output 
intensity : 



We now discuss the fluctuation spectra obtained in this manner. 

111 - FLUCTUATION SPECTRA 

Figure 3 shows the spectra corresponding to the optimum squeezing (curve a) 
and to the intensity squeezing (curve b) at a working point close to the 
bistability threshold on the lower branch (p/T = 0.3 corresponding to the 
cross in (Fig. 2 - b  1 .  It clearly appears that a good squeezing is obtained 
on a frequency range of the order of the cavity bandwidth. The best 
squeezing corresponds to the null frequency. 

SQUEEZING SPECTRUM 

W 

As expected from the qualitative discussion, there is no intensity 
squeezing at w=O (curve b starts from the value 1). However, an appreciable 
intensity squeezing is obtained at non zero frequcncics. This can be 
interpreted as resulting from a rotation of the probability distribution 
when the analysis frequency is varied. For some particular frequency, the 
curve b gets cangent to the curve a, which means that the squeezed 
q31adrature component is just the field amplitude at this frequency. 

IV - EFFECT OF EXTRA LOSSES 

Up to now, we have considered that the only source of noise for the 
intracavity field is the scape through the coupling mirror. In order to 
discuss the effect of extra losses, we will use the simple model of loss 
through a second mirror (loss coefficient T ' ) .  

INTENSLTY SQUEEZING SPECTRUM 
1 

OPTIMUM SQUEEZING SPECTRUM 
- 1 ,  
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Figure 4a shows some spectra obtained in this manner for the optimum 
squeezing with increasing values of the extra losses ( r / ( - i+r l )  = 0, 5%, 
lo%, 15%). As it is always the case, the presence of extra losses tends to 
decrease the amount of squeezing /17/. 

Figure 4b shows the spectra obtained in the same conditions for the 
intensity squeezing. It appears that extra losses allow a better intensity 
squeezing at zero frequency. This rather paradoxical result can be 
understood by considering that a non zero value of T '  induces a rotation of 
the mean field F"'. This rotation can put the squeezed quadrature 
component along the direction of the field amplitude and is therefore the 
cause of the unexpected intensity squeezing at zero frequency. 

CONCLUSION -- 

We have reviewed in what conditions a very simple optical bistable system 
can produce squeezed states of light. The novel point we wish to emphasize 
is that it allows to design passive devices "eating" the intensity noise of 
an incident laser. 
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