ELECTRON ACCUMULATION AT THE n-ZnSe/n-GaAs INTERFACE
K. Mazuruk, M. Benzaquen, D. Walsh

► To cite this version:
K. Mazuruk, M. Benzaquen, D. Walsh. ELECTRON ACCUMULATION AT THE n-ZnSe/n-GaAs INTERFACE. Journal de Physique Colloques, 1987, 48 (C5), pp.C5-357-C5-361. 10.1051/jphyscol:1987577. jpa-00226781

HAL Id: jpa-00226781
https://hal.science/jpa-00226781
Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ELECTRON ACCUMULATION AT THE n-ZnSe/n-GaAs INTERFACE

K. MAZURUK, M. BENZAQUEN and D. WALSH

Physics Department, McGill University, 3600 University Street, Montreal, PQ, H3A 2T8, Canada

ABSTRACT

Evidence for electron accumulation in the ZnSe side of n-ZnSe/n-GaAs heterostructures is presented. An n-GaAs buffer layer, approximately 1 μm thick, grown with low 10^{15} cm$^{-3}$ electronic concentration on a semi-insulating (100) GaAs substrate is fully depleted of electrons when an additional epilayer of n-ZnSe is grown on top of it. The n-GaAs epilayer electron concentration is restored when the ZnSe is removed by selective etching. The corresponding conductance of the n-ZnSe decreases logarithmically with temperature, going over to activated conduction below 6 K due to strong localization, a characteristic of a 2-D system.

In recent years, the growth by both MOCVD and MBE of ZnSe on GaAs has resulted in a great improvement in the optical properties of ZnSe epitactic layers1. For relatively thick lightly doped ($n \sim 5 \times 10^{16} \text{cm}^{-3}$) n-ZnSe epilayers grown on semi-insulating (SI) GaAs substrates the transport properties are well understood: the conduction electron concentration is governed by thermal excitation from donor impurities, the corresponding mobility being considerably reduced by large compensation2. Nevertheless, when the transport properties are compared for different epilayer thickness (t) in the submicron to micron range3, they are singularly unusual in that the average room T resistivity of nominally...
undoped n-ZnSe on SI GaAs increases with t. In addition, the usual free exciton photoluminescence (PL), which is at 2.8015 eV for thick ZnSe samples, was found to be shifted to higher photon energy for submicron thick ZnSe grown by MBE, namely to 2.8054 eV for ZnSe on GaAs substrates\(^4\) and 2.8064 eV for ZnSe on a GaAs buffer layer\(^5\). The latter\(^5\) demonstrated by RHEED that nucleation of ZnSe on the GaAs epilayer proceeded by a 2-D growth mechanism and accounted for the 5 meV shift in PL by valence band splitting due to the uniform tetragonal lattice distortion. Recently, we have reported the electronic Raman spectrum of neutral acceptor impurities, identified as phosphorus in undoped compensated n-ZnSe on a GaAs buffer, the non-equilibrium population being generated by below band-gap laser light\(^6\). This spectrum showed a Γ_8 ground state splitting of 52 cm\(^{-1}\) in agreement with deformation potential estimates for a uniform lattice distortion due to the 0.24% mismatch.

The ZnSe epitaxial layers used in this study were deposited on (100) GaAs substrates by low pressure MOCVD using dimethylzinc and H\(_2\)Se diluted with H\(_2\) as source materials. At growth temperatures below 350°C, highly resistive layers are observed, but at 400°C and above they are conducting. Assuming a uniform electron distribution across the epilayer, the electron concentration at room T varied from 1.4×10^{18} cm\(^{-3}\) to 1.7×10^{17} cm\(^{-3}\) as t varied from 0.05μm to 0.55μm for a number of samples grown on SI GaAs at 400°C under identical conditions except for growth time. The results indicate the presence of a very conducting layer near the interface, the origin of which was examined in the following way. Two 1.1μm thick n-GaAs epilayers (samples 1 and 2) were grown simultaneously by MOCVD on two separate SI GaAs substrates 1 cm square, in the same reactor and under identical conditions. Subsequently, sample 1 was transferred in an inert ambient to another similar reactor where a 0.35μm thick n-ZnSe epilayer was grown on top of it. After removing 2 mm square of ZnSe from each of the four corners for electrical contacts to the underlying n-GaAs epilayer using alloyed tin dots, the GaAs epilayer was found by the Van Der Pauw technique to be completely depleted, although the electron concentration of the n-GaAs epilayer of sample 2 was 9.0×10^{14}cm\(^{-3}\). Furthermore, on removing additional ZnSe so that a 2mm wide strip of GaAs was fully exposed between two contacts on one side of the sample, this GaAs strip became conducting, although the conductivity across the diagonal was zero. This indicates that electron depletion occurs on the GaAs side of the interface contrary to popular expectations\(^7,8\).

In addition, low T conductivity measurements of the n-ZnSe epilayer of sample 1 showed properties corresponding to a 2-D metallic system. Between 1.4 and 6 K the conduction is activated (Fig. 1), being given by

$$\sigma = 2.59 \times 10^{-4} \exp[-(107.7/T)^{1/2}]$$

which has been observed in quench-condensed metal films like Au and Cu\(^9\) and also Si inversion layers\(^10,11\). Above 6 K the conduction goes over continuously to a
logarithmic dependence on T as shown in Fig. 2. The conductance has the well-known dependence:

$$\sigma(T) = \sigma(To) + \frac{\alpha P e^2}{\pi h} \ln(T/To)$$

where $\sigma(To) = 1.33 \times 10^{-5} \ \Omega^{-1}$, $To = 18K$ and $\alpha P = 0.87$. The deviation in Fig. 2 at high T results from excitation to the conduction band from neutral donor impurities in the bulk ZnSe. The corresponding conductance is:

$$\sigma' = \sigma_c \exp\left[\frac{(E_c - E_F)}{k_B T}\right]$$

where $\sigma_c = 2.28 \times 10^{-5} \ \Omega^{-1}$ and $E_c - E_F = 14.06$ meV, k_B being the Boltzmann constant. This energy is approximately half the shallow donor binding energy in ZnSe as expected for a compensated crystal in this T range, where $N_D > n > N_A$. We note that $\sigma(To)$ is close to the minimum metallic value $e^2/\pi h = 1.23 \times 10^{-5} \ \Omega^{-1}$. This system, which differs essentially from the GaAs/GaAlAs heterostructure, has considerable disorder due to impurity compensation and interfacial non-uniformity, but does have similar transport properties to that observed in doping-modulated GaAs superlattices. Moreover, the n-ZnSe/n-GaAs heterostructure on a SI GaAs substrate with conducting ZnSe as gate has FET characteristics. Photoconductivity of the n-ZnSe layer grown on n-GaAs was measured at 7 K using below ZnSe band-gap illumination (6828 nm). A logarithmic decrease of resistivity with light intensity was obtained, and was inconclusive.
due perhaps to electron excitation from deep electron-trap levels in the ZnSe.

In conclusion we have shown some evidence which indicates that for a n-
ZnSe/n-GaAs heterostructure, electron accumulation occurs on the ZnSe side due
presumably to the polarization change at the interface. Indeed, exploratory n-
ZnSe/n-GaAs/n⁺-GaAs heterojunctions showed a 0.8 V photovoltage, with the GaAs
side negative, consistent with GaAs depletion. The results are consistent with
the self-consistent pseudo-potential of Ihm and Cohen13 for (100) ZnSe/GaAs
interface. The conductance of the n-ZnSe decreased logarithmically with T going
over to activated conduction at 6 K due to strong localization, a characteristic
of a 2-D metallic system. Zn diffusion in GaAs does not appear to be a problem
during the MOCVD growth, ZnSe being readily formed at the GaAs surface.

Fig. 2 $\alpha(T)$ vs. $\ln(T/To)$ between 10 and 150 K

REFERENCES

1. P.J. Dean, W. Stutius, G.P. Newmark, B.J. Fitzpatrick and R.N. Bhargava,
(1985).
4. Takafumi Yao, Toshihiko Takela and Ryuji Watanuki, Appl. Phys. Lett. 48,
1615 (1986).
5. R.L. Gunshor, LA. Kolodziejski, M.R. Malloch, M. vaziri, C. Choi and N.