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Des e'tudes structurales de superre'seaux GaAs-AlAs incommensurables et de'sordonne's ont 
e'te' re'alise'es par des mesures de diffusion Raman par les phonons acoustiques. Les propriete's 
du facteur de structure des superrbeaux de type Fibonacci et Thue-Morse sont discute'es. 

We report structzlral studies of incommensurate and random GaAs-AlAs superlattices using 
Raman scattering by acoustic phonons. Properties of the structure factor of Fibonacci and Thue- 
Morse superlattices are discussed in  some detail. 

Non-periodic layered structures and, in particular, random and Fibonacci superlattices 
(FSL's) have recently received much The motivation for this is largely the fact 
that these structures are a realization of well known one-dimensional (ID) models showing 
features quite unlike those of periodic ~ ~ s t e m s . ~ - ~  The interest in random superlattices focuses 
on the problem of Anderson l o c a l i z a t i ~ n . ~ ~ ~  FSL's are 1D analogs of quasicry~tals,~ with wave 
behavior characterized by a self-similar hierarchy of gaps and critical (or chaotic) eigenstates.5-7 
Structures based on automatic sequences have been also considered in the literature.'' Thue- 
Morse superlattices (TMSL's) belong to this group. 

Raman scattering (RS) has been extensively applied to the study of acoustic phonons in 
periodic semiconductor structures.ll Such studies provide information mainly on the structural 
properties of superlattices and, to a lesser extent, on the frequency spectrum of sound waves.ll 
In this report we concentrate on the structural aspects of RS in layered systems. We review 
recent ~ o r k s l ~ * ' ~  on FSL's and present new results on GaAs-A1As random and Thue-Morse 
structures. 

The samples used in this study consist of sequences of two building blocks A (GaAs) and B 
(AIAs) of thicknesses dA = d~ = 20A0. They were grown by molecular beam epitaxy on (001) 
GaAs substrates. Raman spectra were obtained in the z(xl, x ' ) ~  backscattering configuration 
where z is normal to the layers and X' is along the [l101 direction. This geometry only allows 
scattering by longitudinal acoustic (LA) phonons with wavevector along [ o o I ] . ~ ~  

In the photoelastic continuum model, the intensity for RS by LA phonons is given by:'' 

where U(z) is the amplitude of the mode with frequency 0, P(z) is the local photoelastic 
coefficient PI2 = PA, PB and q is the scattering wavevector. In GaAs-A1As and other systems, 
the PI2- modulation dominates over the relatively weak modulation of the LA sound velocity." 
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The phonons can be approximated by plane waves and Eq. (1) reduces to ( ~ B T  >> 60)': 

where K is the Bloch wavevector and Pk is the Fourier transform of P ( z ) .  Eq. (2) establishes 
the link between RS and structural studies. For a given Pk, it describes scattering by phonon 
doublets with K = ] k f  ql. In periodic superlattices, Pk cc L bk,k, with k, = 2rn(dA + d ~ ) - l ;  n 
is an integer and L is the total thickness of the structure. This leads to equally spaced doublets 
at a, = clkm f q1 (C is an average sound velocity). For non-periodic systems with dA = dB = l ,  
like our samples, it is convenient to introduce the sequence {aj) where aj = 0 if the jth layer 
is A and aj = 1 if it is B. The expression for Pk in terms of the aj's is (k # 0): 

with the structure factor 
S(k) = a .ei(klj) 

The properties of S(k) for Fibonacci, Thue-Morse, and particular random sequences are dis- 
cussed in the following. 
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Figure 1: Comparison between measured and calculated [Eq. (l)] Raman spectra of the 

Fibonacci (a,a'), Thue-Morse (b,b') and random (c,c') superlattices. The dashed curve in (c') 
corresponds to L = oo. The scattering geometry is z(z1,z ' )~ .  T = 300°K and the laser energy 
is WL = 2.602 eV. 

Fibonacci Superlattices. - The Fibonacci sequence can be described as the limit of 
generations that obey the rule a, = a,-1 @ av-z with cl = {O) and a2 = (01). This gives, e.g., 
a 5  = {01001010). The resulting structures are incommensurate with two basic periods that are 



in a ratio given by the golden mean T = (1 + &)/2.139 An analytical expression for S(k) can 
be derived using Elser's projection method.14 The result is: 

where km, = 2 ~ l - ~ r - ' ( r n r  - n). Eq. (5) gives a dense set of &function peaks. S(k) is largest 
for n = 0, but P(k) [Eq. (3)] vanishes at the corresponding k-values (this is not the case if, e.g., 
d~ = 2dB). The next maximum is n = 1 leading to k = 27r1-1~-1,27rl-1~-2 for lkl < 2~1-l.  
More generally, it can be proved that the strongest peaks of Pk follow the geometric progression 
kp = 2n1-1~P (with integer p).12713 Phonon doublets at  midfrequencies given by TP-progressions 

12,13 are the characteristic signature of Raman spectra of FSL S. 

Thue-Morse Super1attices.- Thue-Morse generations are defined by U, = a,-1 @ U:-, 

where at is the complement of o; 0t = 1 and l t  = 0. The first four generations are a1 = {O),o2 = 
{Ol),us = (0110) and 0 4  = {01101001). The Thue-Morse sequence is not quasiperiodic, but 
automatic.1° S(k) shows an infinite number of irreducible periods. For kl = 2n7r,S grows cc L 
as in periodic systems and, for kl = (2n + l ) s ,  S = 0. Other values of k can be shown to satisfy 
the recursion relation: 

S,(k) = [ l  - e~~(ik/2'-~)]S,-l (k), (6) 

which is valid for L -+ W. The set of k's for which S # 0 has the property that S cc L7 with 
y < 1. The highest exponent is 7 = ln(3)/1n(4) for kl = r/3,  2n/3. The associated phonon 
doublets are expected to dominate the spectra of samples with da = d ~ .  

Random Super1attices.- The simplest random sequence is obtained by Aipping a coin. 
This gives equal probabilites for A and B and zero short range correlations. For L -+ oo, one 
finds15 

L2 L 
(IS2(k)o = $6k,kn + 41 (7) 

with knl = 2ns. The first term on the right corresponds to the structure factor of a regular lattice 
of period l while the second term is the constant incoherent background. The i n t r o d ~ c t i o ~  of 
correlations leads to incoherent scatterfng that depends on k. For instance, the random version 
of FSL's, as defined by a three state Markov process,16 gives: 

with maxima at kl 2nr-l' ~ T T - ~ .  In finite samples, fluctuations respect to the L -+ oo limit 
can be quite important. An example is shown below. 

Results.- In Fig. 1, we compare Raman spectra of our Fibonacci, Thue-Morse and random 
samples with calculations using Eq. (1). The superlattices consist of 377, 256 and 377 blocks, 
respectively. The random structure [Fig. (1) c,c7] is the disordered counterpart of the FSL 
[Fig. (1) a,a']; it was grown according to the Markov process considered above. The continuum 
model1' describes well the positions of the Raman peaks, but not their relative intensities. This 
problem, also noticed in periodic systems, is most likely due to the breakdown of the local 
assumption for very thin layers. The FSL shows major doublets following a power-law (TP) 
behavior, in agreement with the discussion above. The spectrum is more complex for the TMSL 
[Fig. (1) b, b']. The strongest lines can be identified in terms of a small set of wavevectors giving 
the largest 7's of S(k) [Eq. (6)] (a detailed analysis of the Thue-Morse case will be presented 
elsewhere). The narrow features in the spectrum of the random sample are noise due to the 
finite size of the structure. This is evident in the comparison with the L -t m limit [Eq. (B)] 
shown in Fig. (1) c'. 
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