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MOMENTUM DISTRIBUTIONS IN DEFORMED NUCLEI (1)

E. MOYA DE GUERRA, J.A., CABALLERO and P. SARRIGUREN

I.E.M., C.S8.I.C., Serrano 119, SP-28006 Madrid, Spain

Abstract. We discuss some distinguishing features of momentum distri-

butions in deformed nuclei.

Nuasielastic electron scattering provides a very powerful tool to
investigate momentum distributions of protons bound in nuclei(12
Untill now the experimental information available has been analyzed in
terms of the independent particle model assuming nuclei to be
spherically symmetric, in which case the spectral function takes the

simple form
8(E,p) = IN, n,(p) S8(E-E) (1)
o

where o stands for the quantum numbers of the single particle orbital
(nl1j); and na(p), Ea’ Na are, respectively, the momentum distribution
(normalized to 1), the binding energy and the occupation number of
said orbital.

Tt is well known that many nuclei adgquire a deformed axially
symmetric shape in their ground state. For these nuclei the ground

state charge density in the intrinsic frame is given by

p(¥) =] P, () Py (6.)

similarly the momentum distribution of the single particle orbitals

will have the form

n(p) = ; ny () P, (8).

While the effects of nuclear deformation in elastic and inelastic’

(2}

scattering have been extensively discussed , those in quasi-elastic
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electron scattering have, to our knowledge, never before been
considered.

For the process A(e,e'p'}B the dependence of the nuclear struc-
ture can be factorized out (in plane wave impulse aproximation
(PWIA)) in the spectral function(1)

S(E,p) =

1 o 2
V8 (B-s +es) Tl<v a_|la,. (@) ||y, T >] (2)
23,41 B B *a 2% B“B!!9¢5 A°A

where W; JA’ represents the wave function of the ground state of the
target, with angular momentum J
WB J

€

a and total binding energy eo, and

B the wave function of the residual nucleus B, with binding energy

B* In this paper we discuss the form of the spectral function for
axially symmetric deformed nuclei. To simplify the discussion we use
the Bohr—Mottelson(3) factorization approximation and Nilsson model(4)
single particle wave functions.

For axially symmetric deformed nuclei we write the wave function
in the laboratory system in terms of the relative orientation of the
body fixed system and ‘the intrinsic wave function. For a given band,
KA’ in the A nucleus we write (same conventions and notations as those
in ref. (5) are used here},

1
2,41 ] [0 o FPIRTRE S WO e

16ﬂ2(1+6K ) KaMa Ky ~KpMpy Ky

a'°

a0,y >= 33K, > = [

(3)

and similarly for the states of the residual nucleus B. With this

approximation the spectral function takes the form

2
) = 1 - °© L (P) | o,k (4)
S(E,p) 73,71 % S(E €B+EA)£§|<JBKBl‘aﬂj( )| 2 A>|

where, in particular, if the target A is even-even, we have for the
transition from the ground state (JA=KA=VA=O) to a one quasiparticle

state (VB=1,KB) in the residual nucleus

2 5 Ky 2
|<JBKB|[a2j(P)|lJAKA>l = ZVKBIE Cat Rhljtp)l sj,JB
2
= v n (p) (5)
Kg gy

where vi is the probability for finding the (deformed) single

particleB (s.p.) state KB occupied in the ground state of the target
K

nucleus, and Cn%j are the amplitudes of the s.p. state KB

in the spherical basis
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K

ngjlnlj Ky> (6)

K>:2

B nfij
Hence, one can see that the spectral functions in the deformed and
spherical cases are guite different. First of all, the single

particle binding energies Ea appearing in eq. (1) are replaced in

eq. (4) by
Q rot
€, — €. = B + E {7)
B A JBKB KB
T +1/2
rot B 1
where E (_ ~§r—(JB(J +1)—K +6Ké }}2 aKB(JB+5)))

is the rotational energy and E the guasiparticle energy. Since this

spectrum is in general much moig dense than that corresponding to the
s.p. energies Eu' for a given range of missing energies E the spectral
function will have many more and closer peaks than in the spherical
case. With the experimental resolution available at present, the
rotational levels in a given K band may not in general be resolved,
several peaks thus resulting in a single broader one. On the other
hand for a narrow range of missing energies in the neighbourhood

of a given quasiparticle (or hole) energy the momentum distribution
in the deformed case will in general be quite different. While in the
spherical case the momentum distribution will be that of a single
orbital n.r in the deformed case it will be a linear combination of
many orbitals.

To illustrate this point we consider in what follows the momentum
distributions of the last occupied proton states in 2851, using the
Nilsson model and neglecting pairing correlations. In the Nilsson
model, with deformation parameter in the range - 2<6< 2, the last

ocoupied states in 28Si are the lower K" = %+, g+, 5/2 in the N=2

shell. For §=0 (spherical case) the three states are degenerate into
the 1d5/2 orbital. For 0<|6|< 2 the separation in energy of these
states among themselves is less than or of the order of .1hwo, while
the separation in energy with respect to remaining occupied states
is of the order of 1hwo. Therefore if we are interested in the
momentum distribution, n(p), obtained by integration of the spectral
function over a narrow energy range (v 1 MeV) around the minimal

removal energy, we can restrict our attention to just these three

K s.p. states. Moreover taking into account the spectrum of 27A1(6)
one sees that only the lowest J B = % %+, % %+, states will

contribute in this energy range. In fig. 1 we show the momentun

e ~ . . 3
distribution, n(p)_ns/2 5/2"%1/2 1/2 (in units of (b/vH)”) as a
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Fig. 1 - Momentum distribution for §=—.2{-u=), S==.1{(===), §=0(—),
§=.1(...0), 8=.2(-..-)

function of P (in units of b—1),for different values of the deforma-
tion parameter. A marked dependence on deformation is observed. For
§=0 there is only a bump at P=v2/b, as ISI increases this bump is
reduced and displaced to somewhat larger p values, and other bump
at p=0 appears whose strength increases as f(Sl increases. In fig. 2

we compare our result for the deformed model with §=.1 to the expe-

rimental data and fit given in ref. (7) (see also ref. (1)).
s
e
g 28.. , (27
= Si(e,e'p)” Al
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Fig. 2 - Comparison of deformed model result for §=.1(---) to the

experimental data-and fit(7) .
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= .4,
S1/2

in distorted wave Born approximation (DWIA) with wave functions

The fit in ref.(7) was obtained by using eq. (1), with Nigq . =5.5 and N,
5/2

obtained from a Woods-Saxon potential. Our result shown by the
dashed line in fig. 2 contains a renormalization factor n = .5
to take into account the overall reduction in going from PWIA to
DWIA(7). Also the b value used (b = 1.97 £m) was chosen large to
take into account the displacement to lower momenta in going from
PWIA to DWIA(7)
deformed model gives a very good agreement with the experimental
data.

. Taking into account these two considerations, the
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