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R6sum6 - Pour un systhme de matiPre nuclCaire 3 densite normale, nous Ctu- 
dions la contribution, au champ nucleaire moyen, des corr6lations de 1'Ctat 
fondamental et ce, pour des tempCratures nulle et finie. Nous travaillons 
dans le cadre d'un d6veloppement en nombre de lignes trou en utilisant le po- 
tentiel nucl6on-nucl6on de Paris. Nous mettons en exergue la relation exis- 
tante avec le terme de collision de 116quation de Landau-Vlassov. 

Abstract - Zero and finite temperature contribution of ground state correla- 
tions to the nuclear mean field is studied for nuclear matter at normal den- 
sity within the framework of the hole line expansion using the Paris poten- 
tial. The connection with the collision term of the Landau-Vlassov equation 
is exhibited. 

I. INTRODUCTION 

The knowledge of the nuclear mean field is very important to explain the sta- 
tic as well as dynamic properties of nuclear systems. It 1s then Highly desirable 
to understand the properties of this mean field from first principles. By this 
term, we here mean nuclear forces described by potentials in the frame of nonrela- 
tivistic quantum mechanics. A very intensive effort has been devoted to the ground 
state nuclear matter mean field in the past. But, despite of this effort, the mean 
field is known in first order only, not in the bare interaction, but in the renor- 
malized interaction which accounts for medium effects. Here, we present the first 
microscopic calculation, based on a realistic NN interaction (namely the Paris po- 
tential), which goes up to second order in the renormalized interaction and so ta- 
kes the ground state correlations into account. The calculation is done for zero 
and finite temperatures. 

2. THE FORMALISM 

The framework is the Brueckner approach to nuclear matter (see ref. [ I ]  for a 
review), extended to finite temperature according to the method of ref. [ Z ] .  The 
Green function, which describes at the same time the propagation of a particle ad- 
ded to the medium and the one of a hole punched into the medium (of momentum z 
and energy E ) ,  can be written as (6 = 1 ) 

E - X - M(k,E) 
2m 

The quantity M(k,E), known as the mass operator, can be expanded in series of the 
Brueckner reaction matrix g . The latter is related to the bare NN potential V 
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through the Bethe-Goldstone equation 

Q being the Pauli operator for the intermediate states. Up to second order in g, 
one has : 

with 

where e(k) is the single-partlcle energy for state k .  It has to be determined 
self-consistently as 

In this scheme, 

represents the momentum dependent complex mean field in nuclear matter (up to se- 
cond order), identified to the optical-model potential. Eqs. (2.2)-(2.4) corres- 
pond to the diagrams contained in Fig. 1.  The diagram on the left is called pola- 

risation diagram and the other one the correlation diagram. 
These denominations remind of the physical meaning of the dia- 
grams for particle states. The first one describes the reac- 
tion of the medium on the propagation of a particle due to the 
polarisation produced by this particle. The correlation dia- 
gram describes the effect of the correlations present in the 
medlum prior to the interaction of the particle. In Eqs. 
(2.3)-(2.7), the quantities n(k) are the occupation probabi- 
lities in the unperturbed ground state 

First order con- 
tributions to par- 
ticle (upper row) where )J and the temperature T are related to the nucleon 
and to hole (lower p 
row) self-energy. 

p = C n(k) . (2.9) 
[Fig. I ]  2 

3. THE MEAN FIELD 

In Fig. 2, we present our results for the real part of the correlation and the 
polarisation potentials for normal density po : 0.17 fmT3. We also present ~b:) , 
the mean field calculated in the first order approximation. We see that the pola- 
risation field deepens when going to second order. However, the addition of the re- 
pulsive correlation field makes that globally, the mean field is less attractive 
than in first order approximation. This is an interesting result, which brings a 
better agreement with experiment, provided the deeplying single-particle states in- 
side heavy nuclei can be considered as indicative of nuclear matter properties. 

In Fig. 3, we show our results for flnite temperature. Both the polarisation 
and the correlation fields decrease as the matter is heated up, but the total poten- 
tial does present a weak temperature dependence. 



Vpo&, in nuclear matter at T-0 

LO 

+ Polarisation (Vpo), correlation (Vo) and 
20 total (V) single-particle potentials in 

cold nuclear matter at o ma1 density. 
0 The short-dashed line Y!:f gives the po- 

larisation potential when the usual con- 
- - 20 hoice is used. The short-dashed 
% 
s ::::0y1:9 represents the first iteration 
---LO of the correlation potential. 

[Fig. 21 
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Polarisation (Vpo), correlation (Vco) 
and total ( V )  slngle-particle potentla1 
at T = 7 and 10 MeV. 

[Fig. 31 

4. THE EFFECTIVE MASS 

This important quantity, defined 
as (m = I )  

k 
= de(k) 
dk 1 2  3 .  1 2 3  

klfm-'1 
represents the true inertia of a par- 
ticle embedded in the medium. It is given in Fig. 4 for various temperatures. The 

most important result is the peak appea- 
Effective mass m' in nuclear matter 

. a ~ - r t k , ~  lHPVl ring around kF at zero temperature. The 
-LO -20 0 20 LO 60 80 

I I d k l  l ~ ~ v l '  I I 
presence of such a peak in an extended sys- 

-60 -LO -20 o 20 LO 60 tem was surmised on the basis of the cal- 
I , I , , , I  

1.2- - culations up to second order in a semi-phe- 
nomenological interaction done in ref. [3] 
and of extended model calculations for a 
hard sphere Fermi gas [ 4 ]  and for a s-wave 
interaction [5]. The presence of a simi- 
lar peak in finite nuclei was already con- 
jectured in ref. [6]. It was demonstrated 

0.6- - by Mahaux and Ng6 [7] and longly analysed 
L I / I I I 

0.5 1.0 1.5 2.0 2.5 
in subsequent works (see ref. [8] for a 

klfm-'1 
list of references). It is also predicted 
by semi-phenomenological calculations 

Nucleon effective mass at various tem- In nuclear matter, the peak appears 
peratures. The curve with dots above kF , if only the polarisation con- 
and dashes indicates the effective mass tribution is retained (see Fig. 5 ) .  The 
calculated with the polarisation poten- correlation contribution drives the peak 
tial only. 

[F.lg. 41 to the Fermi level (approximately). Phy- 
sically. this peak is due to the excita- 

tion of core-polarized (Ip-lh) states by a traveiling pe~ticle (or hole). These 
states are characteristic of the bulk matter. On the contrary, the origin of the 
peak in the finite nuclei is perhaps due to the excitation of surface vibrations [Ill 
although the coexistence of the two effects is more probable [12]. 

As the temperature increases, the peak collapses, but not as quickly as when 
the polarisation is solely taken into account or as indicated by semi-phenomenologi- 
cal calculations [lo]. 
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5; THE MOMENTUM DISTRIBUTION 

An expansion similar to eq. (2.3) exists for the momentum distribution ~ ( k )  , 
which writes 

~ ( k )  = p1(k) + p2(k) , 
with 

pl(k) = n(k)[2-ill , 

p2(k) = (l-n(k))i2 , (5.3) 
and 

i - K M.(~,E)\ , i = 1 , 2  . (5.4) 
- E=e(k) 

The results of our calculation at T = 0 are given in Fig. 5. The depletion below 

kF 1s due to the polarisation term and occupation probability at T=O 
the population above kF is due to the 
correlation term. One can notice that 
the depletion of the Fermi sea is quite ,, 

6 .  CONNECTION WITH THE LANDAU-VLASSOV EQUATION 

important. To illustrate this point, - - - - -__________ 
we quote that the parameter K = I-~(k), 
where the bar indicates an average over 

-.-rL ;;, 1 
Pllkj 

the Fermi sea, is - 0.25 in our calcu- 0'5 

lation. In Fig. 6, this value is com- 
compared with other predictions for 
p = PO . It turns out that the Paris 

0.5 1.0 1.5 2.0 2.5 potential should be classified as a k ~fm-ll 
"hard" potential. This property ob- 
viously comes from the momentum de- Momentum distribution p(k) for cold nu- 
pendence of the potential. cle'ar matter (full curve). The short- 

dashed curve represents pl(k) when the 

It is generally believed that the off-equilibrium behaviour of nuclear sys- 
tems should be governed by a Landau-Vlassov type o f  equation : 

A 

0.2- 

H. 

O.'- 

soft hard self-consistency is applied on the pola- 
7- risation potential only. 

/" "\ [Fig. 5 )  
RHC Paris '. 0 

Illustration of the variation parameter K 
with the "hardness" of the inner part of 

0 various NN potentials : HT (Haftel and 

v l ~  Tabakin), HH (Hamman-Ho Kim), RSC (Reid 7 R?C Soft Core), ~ 1 4  (Pandharipande) , RHC 
HH @ st. choice (Reid Hard Core). The full dots refer to 

0 cont. choice the standard choice of the Brueckner- b cont. choice (Ml+M2) Hartree-Fock approximation, the open dots 

HI 0 variational to the continuous choice, the open squa- 
res to eqs. (2.3)-(2.6) and the lozenge 

> 
"hardness" refers to variational calculations. 

[Fig. 61 



+ + 
where f(r,k,t) is the one-body Wigner distribution function and where fi = 
f(?,ei,t). It has been shown recently [I31 that both the mean field U and the 
transition matrix W have to be calculated from Brueckner g-matrix. O f  course, in 
a non-quilibrium process, the g-matrix should be calculated with the instantaneous 
phase space occupation, but equilibrium calculations can be taken as giving the 
gross properties of U and W 

Concerning U we have indicated that this field is nonlocal and depends upon 
the momentum. In first approximation (in H), a L?-dependence of the mean field U 
would introduce the effective mass I n  the 1.h.s. of eq. (6.1) which then would read 

Fig. 4 indicates that this effect is non negligible. It has been studied phenomeno- 
logically in ref. [14]. 

As for the structure of the collision term, there is an interesting relation- 
ship with the mass operator. Indeed, one can write [I] from eq. (2.3) - 

2 Im Ml(k,e(k)) = CCC n ( j ) ( l - n ( a ) ) ( l - n ( b ) ) l < a ~ g [ e ( k ) + e ( j ) ~ l % > l  6(e(k)+e(j)- 
ttt 
~ a b  

and from eq. (2.4) - 
2 Im M (k,e(k)) = - 1 CCC n ( j ) n ( a ) ( l - n ( a ) ) [ < ~ [ g ~ e ( ~ ) + e ( ~ ) ] ( ~ > (  ~(e(k)+e(g)- 

2 2 

Assuming that the transition probability W can be identified to the g-ma- 
trix [13], one can write the collision term as 

Strictly speaking, eq. (6.5) holds in a uniform medium, but it is expected to be 
correct locally in more general situations. The loss term is thus connected to the 
imaginary part of the polarisation potential and the gain term to the imaginary part 
of the correlation potential. At equilibrium, one should have 

This relation is meaningful for T + 0 only. For our case, these two ratios are gi- 
ven in Fig. 7 at two temperatures. We recall that M2 and MI are calculated 
independently. Fig. 7 shows that bhe relation (6.6) is very well fulfilled. The 
observation that the collision term has the structure (6.5) will help to have a 
better determination of the input data to be introduced in the collision term. 
Furthermore, it can be a good starting point for the estimation of equilibrium ti- 
mes and transport properties. 

We want to thank C. Mahaux for his interesting comments. 
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