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CRITICAL EXPONENTS IN NUCLEAR BREAKUP 

Division de Physique ThBorique, Institut de Physique NuclBaire, 
F-91406 Orsay Cedex, France 

Abstract 
The moments of the fragment size distribution are studied for 

single events in a nuclear fragmentation experiment. It is shown 
that this nuclear breakup has clean remanents of a critical 
phenomenon. 

In recent years the study of cluster formation processes has 
become an important new field in statistical mechanics. This field 
concerns at present most branches of physics. We briefly discuss in 
this note how some of these new ideas and techniques can be applied 
to the nuclear fragmentation problem. 

Many theoretical models of cluster formation processes have a 
critical behaviour, in the sense that for a fixed value of some 
variables (temperature, density, time . . . l  typical quantities 
related to the cluster size distribution diverge (or become very 
large in finite systems). This behaviour appears in particular for 
some moments of the distribution. Consider an ensemble of so 
elements and the distribution n(s,&) of clusters of size S at 
physical conditions defined by the variable E. We define the kth 
moment as 

M, (E, = S n(s,elsk (1 
S 

where the sum runs over all finite size clusters of an infinite 
system. In a finite system, we will take the prescription to sum 
over all present clusters, excluding the largest one. When the 
(infinite) system approaches the critical regime the singular part 
of the moments (1) behaves like 

where pk are the critical exponents [l-51. The size of the larges,t 
cluster sL present in the system has also in some cases a critical 
behaviour + 

(3 
+ defining a priori two new critical exponents p;. Some of these 

moments are related to important physical quantities and the 
corresponding critical exponents receive a specific notation. For 
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example in f erromagnetic-paramagnetic transitions Ml mIT-Tc l is 

related to the spontaneous magnetization, and MZ-IT-Tc to the 
magnetic susceptibility. In liquid-gas transitions, M1 is related 
to the relative density difference between the liquid and its 
vapour and M- to the isothermal compressibility. 

In foimulas (1-3) the variable E represents for example the 
distance to a critical temperature £ = T_-T in thermal phase 
transitions [l], to a critica1"density" 8 = p-pc in percolation 
theories [2], to a critical time E = t-tc in dynamical aggregation 
theories [ 31 .  The critical values (Tc ,p, , tc , . . ) depend strongly on 
the nature of the physical substance or on the ingredients of the 
theoretical model (equation of state, lattice type..). In contrast, 
for a given order parameter and a fixed space dimension, the 
critical exponents are quite insensitive to the nature of the 
materials or to the details of the theoretical models. We can say 
that critical exponents are the fingerprints of the various types 
of critical phenomena, in the sense that when we know it for a 
given substance, we can decide to which class of phenomenon it 
belongs. 

Many models predict near the critical regime a cluster size 
distribution of the type 

~ ( s , E )  ~ - ~ f  (c.sU) ( 4 )  

In general f(o)=l, i.e. at critical points the distribution is a 
pure power law. T and U are two critical exponents. 

We can now derive 12) for this particular distribution 123, 

Sma r 

where we have introduced the variable z=€.su and replaced the sum 
by an integral. We see that for an infinite system we recover (2) 
because the upper bound of the integral is infinity and the 
integral has a constant value C: . In contrast, for a finite 
system the value of the integral depends on E, and in particular 
goes to zero when €40. Than M, (E) has always a finite value at 
critical point. A s  an example we show in figure 1 as a function of 
E the moment k=3 of a "typical" distribution : n(s,E) = 
s ~ .  z exp(-11.75(~+0.2)~), ~ = E . S ~ - ~ ~  and smax = 100. The full line 

represents MS (8) , the dashed-dot line the diverging term le l P 3  and 
+ 

the dashed line the integral C ; ( € ) .  We see in this example how the 
notion of critical behaviour Eemains valid in the vicinity of the 
critical point, but not too close to it. 

A cluster size distribution of type (3) was first proposed 
by Fisher for his droplet model [33,  

with T = 7/3 and U = 2/3 in 3-dimensions. 



Percolation models [2] also follow (2) with great accuracy 
when E = p-pc-+O. Here p is the fraction of occupied sites or active 
bonds of a lattice, and pc the critical value at which the system 
"percolates" (i.e develops a single cluster that fills most of the 
lattice sites). In 3-dimensions T = 2.2 and S =  0.45, regardless of 
the percolation type (site or bond), lattice structure (simple 
cubic, body-centered cubic,..) or linkage prescriptions (nearest 
neighbours or longer range). Percolation can be seen as a static 
and purely geometrical modelization of very complex phenomena [5]. 
However the comparison of the physical reality with percolation is 
very tempty because this model is conceptually very simple and 
(numerical) calculations are easy, specially in small size systems. 
Also the predicted values for the exponents are close to those of 
Ising-magnet or lattice-gas models [5]. In addition percolation 
ideas have been recently introduced in nuclear fragmentation models 
6 We can say that percolation is the simplest cluster formation 
model showing a "reasonable" critical behaviour. 

Fig.1 - P l o t  o f  M3(€) ( f u l l  l i n e )  
and i t s  components i n  eq. (5): tdashed) 
C' (€ )  and  IEI p 3  ( d a s h e d - d o t )  f o r  
a t y p i c a l  c l u s t e r  s i z e  d i s t r i b u t i o n .  

In what follows we will compare experimental nuclear data on 
nucleus breakup to the predictions of an equivalent size 
percolation model, with the purpose to see that both systems show 
similar remanents of a critical behaviour, with similar critical 
exponents. We will take finite size percolation just as a reference 
model. 

The piece of experimental data we analyze [7] consists in 370 
collision events, in which 1 GeV.A Au projectiles break in lighter 
fragments when hit target nuclei in an emulsion. Event by event, 
the size (in fact the charge 1<2<79) of all Au fragments has been 
measured [g]. Typical low energy fission events, as selected in 
ref.[8], are not included in the analysis. We discuss first how to 
show up the critical behaviour. 

According to eqs.(2) and (3) in an infinite system we predict 
linear correlations in a log-log plot between the M,, (and S, and 
M,). In a small system we expect some distorsions zue to ihe € 

dependence in C,(&), eq.(5). We have studied the correlations 
M3 -M2, MS -MZ and S,. -M1 in ref. [7]. The correlations MO -M, (k=1,2,3) 
are discussed in ref.[9]. Here we present the correlations Mm-M* 
and S, -M1. Because we ignore in the nuclear case what is & aAd we 
don't -like to introduce any model dependence in our analysis, we 
work directly with single event distributions, i.e. for each 
collision event j we calculate the moments 
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where m' (S) = 0.1.2.. is the number of fragments of size s that. 
appear in the event j. (The heaviest fragment sL is not included in 
the sum). We choose the normalization 

S: = M: /M: 

Figure 2 shows the correlation S: against S:. On the right (b), 
each point is a Monte Carlo simulation on a cubic lattice bond 
percolation model containing 6X6X6 sites. The values of p are 
chosen randomly distributed between 0 and 1. Events close to 
critical region (pqc) are represented by points with the largest 
values of S* and S-. Above and below the critical zone, points fall 
closer to origin." Nuclear fragmentation events are represented in 
fig.(2a). We see that for events with S-A, 2 the slope is about the 
same for the nuclear data as for tge percolation simulation : 
hJ,,= 4.62.2. This number is to be compared with h,,,= 4.75 in 
infinite percolation models [2]. We can conclude within the present 
experimental uncertainties that the ratio p,/p, is about the same 
in all cases. This is a rather unexpected result. 

We also remark in figure(2a) a change in the slope for the 
events with S2X 2. This was interpreted in ref. [7] as a 
manifestation of the finite size of the system affecting the most 
critical events as discussed with formula (5). A closer 
investigation reveals a different origin. Most of the events that 
populate this region have two very big fragments, plus many s=l or 
S-2 fragments. Obviously this events do not fit with a size 
distribution of type (g), what explains the anomalous slope. In 
contrast, these events seem to correspond to the prediction of 
D.H.E. Gross [10,11] of a medium excitation energy "fission like" 
fragmentation. 

The correlation sL-S3 is plotted in figure 3. Here each point 
represents the average over two or more events with the same S,. 
Again we observe similar correlations, with similar slopes.   he 
upper branch of the curves concern events with p>pc (b) or "gentle" 
nuclear collision events (a). The lower branch represents events 
below pc (b) or violent collisions (a). The slope of this branch is 

A L / ,  % 1.2+0.2 in both cases, in agreement with the predicted value 
in infinite percolation hL/,=1+!3/7=1.26. About the same value is 
predicted for (infinite) thermal phase transitions, but h,,.,=1.5 in 

- 1  - 
a mean field approximation. 

We summarize. The validity of the "universal" scaling 
relation ( 4 )  has been tested for nuclear fragment size 
distributions. A finite size percolation model has been used as 
simple test model. Using moments technique we have seen in both 
cases similar remanents of the behaviour predicted by this 
equation, with similar ratios of critical exponents. These ratios 
are close to those of percolation and those of Ising-magnet or 
lattice-gas models in infinite systems, but different from the mean 
field approximation. In any case the ratios of critical exponents 
we have deduced from experimental data put severe new constraints 
on static or dynamic nuclear fragmentation models. 



Fig.2 - Single event moments S: plotted against S:, for nucleus 
break-up (a) and for a Monte Carlo simulation in a cubic bond 
percolation model containing 216 sites and randomly distributed 
values of O<p<l (b) . 

Fig.3 - The size of the largest cluster produced per event, as a 
function of Sz. Each points represents the average over events with 
same S,.. a) Largest nuclear fragment charge. Average over 376 
events. b) Largest cluster size in a cubic bond percolation model 
containing 216 sites and for randomly distribution values of O<p<l. 
Average over 4000 events. Only the slopes of the curves can be 
compared because of different system size. 
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