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Abstract 

We present a semiclassical study of the breakdown of the 
leptodermous character of drops of quantum saturating fluids. A 
comparison is made between liquid 4 ~ e ,  3 ~ e  and nuclear matter. We 
discuss the size of the smallest bound drop in connection with the 
statistics obeyed by the particles and the structure of the bulk 
energy density. The existence of metastable fermionic systems with 
positive energy and negative chemical potential is also 
investigated. 

I. INTRODUCTION 

S. Stringari in his contribution to this meeting has outlined 
the similarities and specificities of different quantum fluids, 
namely nuclear matter, liquid 3 ~ e  and liquid 4He. 

In the present contribution I would like to concentrate on 
one aspect of this discussion, which is concerned with the limit of 
very small systems bound by saturating forces. One of the question 
we will address is : what determines the size of the smallest bound 
drop ? In the case of nuclei, one can go down to 2 particles ; in 
the case of helium, clusters have not yet been produced 
experimentally and we have to rely on their theoretical 
"production", which are discussed in refs.[l,2] ; from these 
calculations, it appears that 4 ~ e  clusters are always bound whereas 
in the case of 3 ~ e ,  one needs at least = 30 atoms to form a bound 
drop ; smaller clusters are found with positive energy and negative 
chemical potentials. Can we understand these features in simple 
terms ? 

A word about shell effects is here in order ; as should be 
done in a meeting on semiclassical methods, I will distinguish 
between average trends and shell structure, except of course in the 
case of 4 ~ e .  In the case of 3 ~ e ,  the results of the mean field 
calculations of ref.[2] indicate that the existence of shells 
manifests itself in a different way than in nuclei. On one hand the 
shell structure on the separation energies is relatively more 
pronounced than in nuclei, because i) the effective interaction can 
be considered purely central and ii) the surface diffuseness is 
large (the ratio of the surface diffuseness to the mean separation 
distance is of the order of 1 in the case of 3 ~ e  whereas it is of 
the order of 0 . 5  in the case of nuclei) ; hence the degeneracy of 
the major shells resembles that of a pure harmonic oscillator. On 
the other hand, the existence of shells does not produce any 
oscillation of the density distributions, as is the case in mean 
field calculations of nuclei. This is due to several effects : to 
the large value of the effective mass lm*=3m) which makes quantum 
effects to be less active ; to the large surface energy ( E  3 times 

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987217

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphyscol:1987217


C2-108 JOURNAL DE PHYSIQUE 

the volume energy) and the large incompressibility (z  40 times the 
volume energy) which make the occurrence of density oscillations 
energetically unfavorable (in ref.[l], variational calculations 
were performed using correlated basis functions and a realistic 
atom-atom interaction ; some density oscillations were indeed found 
in medium sized 3 ~ e  clusters and in small 4He clusters ; however 
they seem to reflect the structure of the trial functions used in 
the minimization and should probably be considered as spurious). 

The reduction of the quantum structure in 3 ~ e  clusters 
discussed above indicates that even in small clusters a 
semiclassical description will be appropriate. Actually it is shown 
in ref.[2] that the semiclassical density distributions of 3 ~ e  
clusters coincide with the quantum mean field results. 

11. A DENSITY FUNCTIONAL APPROACH 

We assume that the energy of the system can be written as : 

This assumption is morally supported by the Kohn-Horenberg 
theorem and practically worked out by using Skyrme-type forces 
together with a semiclassical approximation for the kinetic energy 
density [3]. The structure of the functionals commonly used 
(consider one type of particles only) is the following : 

where F(p)/p represents the bulk energy density and G(p) 
characterizes the effective interaction in the surface region. G(p) 
is usually positive for all values of p. The density p(r) is 
determined by the Euler equation : 

where h is the chemical potential. Due to the saturating property, 
the energy can be expanded in powers of A-"= (A is the number of 
particles) 

and the separation energy A is given by 

Two examples of density distributions of helium clusters, 
taken from ref.[2], are shown in fig.(l), where are also given the 
results of ref.[l]. In the case of 3 ~ e ,  the quantum mean field 
curve and the semiclassical one are undistinguishable. 

The saturating character of the interaction implies that the 
radius R of the drop (which is spherical if one neglects shell 
effects), is proportional to  he surface thickness t, which is 
of the order of the range of the force, is almost independent of 



A : hence the dimensionless parameter t/R A-"~ can be used as an 
expansion parameter characterizing the departure of any property of 
the finite drop from the corresponding property of the uniform 
medium. Such systems are known as "leptodermous systems". When 
considering smaller drops, the expansion in powers of becomes 
questionable and indeed new terms, non-analytical in arise ; 
the leptodermous regime goes into a "pachydermous" one and finally 
to a "holodermous" regime where the drop is pure surface. 

Fig.1 - Density distributions of two helium clusters. 
Straight line : mean field calculation of ref.[2] 
dots : exact calculations of ref.[l]. 

I shall in the following discuss two aspech of such systems 
which are, as we shall see, closely related : 
i) a simple prediction of the Droplet Model which states that the 
bulk region of a drop should be compressed by the surface tension. 
ii) what determines the size of the smallest bound drop. 

111. COMPRESSION OF THE BULK BY THE SURFACE TENSION 

Let us first consider a simple prediction of the Droplet 
Model, stating that the central density of a finite drop should be 
larger than the saturation density p o .  The energy involved in 

compressing the bulk is proportional to aa~*I3 and the energy 
involved in the resistance of the bulk is of the order KA, where K 
is the incompressibility modulus. Hence the relative compression is 
proportional to the ratio of these two quantities. The exact result 
is : 

where pc = p(r=O). However this prediction : "smaller drops should 
be more compressed", fails for small systems. On fig.(2) are 
reproduced the density distributions of He clusters of ref.[l]. 
The semiclassical results for hypothetical nuclei where the 
spin-orbit and the Coulomb interaction have been suppressed are 
shown in fig.(3), together with the results concerning ' ~ e  and 4 ~ e  
clusters. In the case of nuclei, the prediction of eq.(l) is 
fulfilled for A > 100 in the case of SkM interaction and A > 40 for 
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SIII. For smaller drops, there is a "down-turn" of the curve and 
smaller drops are less compressed. For 3He and 4 ~ e  clusters, the 
transition takes place around A rr: 300 and 200 respectively. 

This question has been discussed in ref.[4] and I will just 
sketch here the argument. If, in the Euler equation, one neglects 
all derivatives at r=O, one gets : 

with 

so one recovers eq.(6). One also obtains the result that if A is a 
monotonic function of A, as it surely is, then %p/p_ is also 
monotonic ; in particular the down-turn cannot be obiained by 
considering more terms in the A - " ~  expansion of h (curvature or 
higher order terms), as was suggested in ref.[3] : the monotonic 
behaviour is linked to the assumption of zero derivatives at r=O. 

Fig.2 - Density distributions of helium clusters from ref.[l]. 

Indeed, while the first derivative of the density vanishes at 
the origin, the second derivative does not, and the Euler equation 
at r=O actually reads 

with bp(0) = 3pW(0). The equation replacing eq.(l) now reads 



where sin characterizes the exponential behaviour of the density 
away from the surface 

and one also has 

~"(0) a - exp (- ) = - exp[- $ ] 

Fig.3 - Relative central compression as function of mass number. 
Upper curves from ref.[4] ; broken curve : HF ; dashed line : 
semiclassical ; straight line : eq.(6) ; dashed dotted : eq.(6) 
plus curvature correction. 
Lower curves from ref.[2] ; full line : semiclassical ; dashed 
line : eq. (6). 

Thus the down-turn in the relative compression is produced by this 
exponential term, which becomes dominant over the leptodermous one 
below a certain critical mass A-. The presence of such an 
exponential term expresses the bkeakdown of the leptodermous 
behaviour of the drop, which becomes pachydermous. The magnitude of 
this term is governed by the ratio of the mean distance between the 
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particles to the inward diffuseness. One should notice that this 
inward diffuseness may be significantly different from the global 
diffuseness of the surface profile, related to the total surface 
thickness ; for example for semi-infinite nuclear matter, one finds 
153 that a c 0.8-0.9 fm (for K=200 MeV) whereas the global 

'9 diffuseness 1s = 0.55 £m. In the case of liquid helium, one finds 
[ 6 ]  that the surface profile is highly unsymmetrical and that the 
density decreases outward more rapidly than inward, so that most of 
the surface thickness is governed by sin. 

Numerically one finds - 
I 

0 - N 1.4 for nuclear matter 

ai n 

- N 1.1 for 

L 

O N l for ' ~ e  
a'. 

From eq.(12), the size of the system where the transition 
from the leptodermous behaviour to the pachydermous one takes place 
is expected to vary as the cube of the ratio ain/ro. This 
expectation agrees with the values Ac c 100, 200 and 300 found 
respectively in fig.(2). 

IV. SIZE OF THE SMALLEST BOUND DROP 

We now turn to our second point. Let us start with the 
expression of the total energy of the drop 

The contribution of the gradient term is positive ; the 
binding comes from the integral of F(p). The function F(p)/p for a 
uniform system of fermions is sketched in fig.(4) ; at low 
densities it is positive because the kinetic energy is dominant 
over the potential energy ; with increasing density the attraction 
is more effective and F(p)/p becomes negative for a certain value 
p- ; for a system of bosons, there is no kinetic energy and F(p) is 
negative at low densities. 

When considering the integral of F, we shall distinguish 
between r < r- and r- , where r- represents the radius where the 
density is equal to p- : 

The first term in the r,h,s of eq.(13) is negative and the second 
one is positive. Hence for a cluster to be bound, the central 
density must be large enough so that the first term compensates for 
the second one and for the contribution of the gradient component. 
Clearly, the smallest bound cluster must have p. significantly 
larger than p - .  Now we have seen above the central density of a 



pachydermous drop decreases with the number of particles ; 
therefore for a system of fermions one necessar i l y  reaches a finite 
limit to the size of the smallest bound drop. The smaller  the v a l u e  
of p - ,  the smaller  the s i z e  of t h i s  drop. For a system of bosons it 

f ( ~ 1  

P' 

is not so, because in order to minimize the energy, the system will 
develop a smooth surface with small gradients : consequently the 
central density will be small, but the integral of F will still be 
negative. One thus expects that any number of bosons will form a 
bound system. 

€/A 

sehemsllc energy per partlclr 
of a vnl form medl~lm 
(fcrmions) 

Fig.5 - a : binding energy versus density in dimensionless 
coordinates 

b : same as a using the abscissa defined in eq.(19) ; 
thin line from ref.[83. 

S- -------- - - - - - - -  
9 

5 

schematic det~slty dlstrlbutlon 
of a drop 

The actual curves for the three quantum liquids considered 
here are shown in fig.(5a), using dimensionless coordinates. One 
finds the following results : 
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p- - - - 0 for 4 ~ e  

PO 

p- - - - 0.15 for 3 ~ e  and 

PO 

p - - N I O - ~  for nuclear matter 
PO 

These values explain why the number of particles At of the 

smallest bound 3He cluster is appreciable (N 30 atoms) while in the 
case of nuclei one can go down to 2 particles. 

Notice that it is not the value of the surface energy which 
governs the value of A e .  The surface energy depends on both 
functions F(p) and G(p). Ae depends only on F(p). 

A few years ago, Grammaticos discussed the same subject [7] 
and arrived at the conclusion that At should be zero. However his 
result was obtained using a schematic functions which is a t t r a c t i v e  
a t  all d e n s i t i e s .  Such a functional, as we have seen, is not 
appropriate for the discussion of fermionic systems. 

V. METASTABLE DROPS OF FERMIONS 

It is possible to show, from the Euler equation, that for the 
smallest bound drop, whose binding energy Et is zero, the chemical 
potential is strictly negative. One multiplies eq.(3) by p' and 
integrate between +a, and some radius r ; the result is 

which, after integrating by parts, can be written as 

We now integrate eq.(15) over all space ; after permuting the order 
of integrations in the last term of the r.h.s. one gets 

Now the smallest drop has zero binding energy, i.e. 

Introducing eq. (17) into eq. (16) leads to 

which is a negative quantity. Moreover one has necessarily A < E / A ,  
because the energy per particle is a decreasing function of the 



number of particles. Thus one can find numerical solutions of the 
Euler equation for A < Ae,  until the chemical potential reaches 
zero ; this happens for a certain critical number of particles Ao. 
For A. < A < Ae, one has metastable drops with positive energy and 
negative chemical potentials. The situation is schematically shown 
in fig.6. 

Fig.6 - Schematic representation of E/A and A for small fermionic 
drops. 

VI. UNIVERSAL BINDING-ENERGY-DISTANCE RELATION ? 

We shall finish with a brief discussion of a recent work 
where arguments are given that the binding-energy-distance (or 
density) relation is universal. In order to exhibit this 
universality, the authors of ref.[8] define a scaled abscissa a* by 

where r is the inter-particle distance corresponding to the density 
p and 42 a length scale defined as 

The resulting curves are plotted in fig.(5b) ; we also show 
for comparison the curve presented in fig.(l) of ref.[8], 
representing the binding-energy-distance relation for molecular and 
metallic systems. Although at short distance the scaling accounts 
satisfactorily for the small differences seen above saturation 
density in fig.(5a), the effect of the different statistics obeyed 
by liquid 3 ~ e  and 'He shows up clearly for a*>O. The scaling length 
t takes into account compressibility effects, however the relative 
variation of K with density (related to the Griineisen constant) may 
also by quite different for various systems ; in particular it is 
relatively much larger in 3 ~ e  than in nuclear matter. This explains 
why the curves for fermionic systems do not coincide in fig.(5b). 
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The value of the ratio of surface to volume energy is partly 
related to the same question. The value proposed in ref.[8] ( E  

0.82) does not apply for liquid helium quantitatively. This ratio 
is N 2.4 for 4 ~ e  and N 3.4 for 3He (it is 1.2 for atomic nuclei). 
Relations between incompressibility, saturation density, surface 
tension and surface thickness have been investigated in particular 
in refs.[5,7,9]. 

VII. CONCLUSION 

We have tried in the present study to illustrate how rather 
detailed features of exact calculations can be understood in simple 
terms within a density functional approach. Concerning the 
compression of the bulk by the surface tension, we have seen that 
the parameter Y governing the transition from the leptodermous 
regime where "smaller drops are more compressed" to the 
pachydermous regime where the opposite is true, is just the ratio 
of the inter-particle distance to the inward surface diffuseness of 
the surface. This parameter appears in an exponential term of the 
form exp(-7~"~). The size of the smallest bound drop is different 
for boson systems and for fermion systems. For bosons, any number 
of particles are able to form a bound drop. For fermions, the size 
of the smallest bound drop is related to the balance between the 
kinetic energy and the potential energy at low density, and not to 
the value of the surface energy, as one might have expected. For 
liquid 3He. the interaction is not strong enough and one needs at 
least s 30 atoms to form a bound cluster. Below this mass, 
metastable drops with positive energy and negative chemical 
potential may exist. The absolute limit, corresponding to zero 
chemical potential, is found to be around 16 to 18 atoms. 

This work is part of collaborations with S. Stringari and 
W.J. Swiatecki. It has also benefitted fruitful discussions with 
W.D. Myers and H. Krivine. 
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