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RESUME

On analyse les différents schémas théoriques permettant de calculer les
spectres d'absorption de rayons X 3 partir des couches profondes et on montre qu'ils
sont équivalents., Le cadre unifiant est donné par la théorie de la diffusion
multiple. En particulier on montre que la formulation basée sur les fonctions de
Green. permet, sous certains conditions, d'éecrire le coefficient d'absorption comme
une série de termes qui ont ume signification physique directe. On discute les
conditions sous lesquelles le développement est possible et en conséquence on propose
un schéma d!interprétation des spectres d'absorption A la fois unifié et cohérent. On
donne enfin une formule approchée des propagateurs qui permet le calcul rapide du
terme générale d'ordre n de la série,

ABSTRACT

The various schemes for calculating inner shells X-ray absorption spectra
are reviewed and shown to be mutually equivalent. The unifying framework is provided
by the multiple scattering (MS) theory. In particular the formulation based on the
Green's function approach allows one under certain conditions to write .the absorption
coefficient as a sum of an infinite number of terms which have a direct physical
meaning. The conditions under which this expansion is possible is discussed and as a
consequence a unifying scheme of interpretation of X-ray absorption spectra is
proposed. Finally an approximate formula for the rapid evaluation of the n-th order
term of the expansion is given.

INTRODUCT ION

Starting from the general expression for the X-ray absorption cross-section
of a cluster of atoms

o) = n* Ea L] (e BB v, ) |2 6(E - B, +E ) (ame?/ne - T;—,,) 1)
£

>
where E is the photon energy, 3 its polarization versor and D is the dipole
transition operator (atomic units are used throughout), there are basically three
different approaches for evaluating this guantity :
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1 - the scattering approach where one calculates the time-reversed
scattering wave function \p; for the photoelectron in the final state with energy
e =E - I, where I_ is the ionization energy, suitably defined for the system under
study ([1, 21).

> > = >
2 - The Green's function approach, whereby o{(E)~E Im ("pinl p.D G p.D | win) 30

that the problem reduces to the solution of the equation (e ~ H) G = I, where I is
the unit operator, H the hamiltonian of the system and G is the related Green's
function, with incoming wave boundary conditions [3].

3 - The band structure approach. for periodic systems, where the scattering
states are replaces by Bloch states so that the sum over the final photoelectron
states becomes an integral over the appropriate Brillouin zone [4].

We shall show in the following that in the framework of the multiple
scattering (MS) theory all three approaches are numerically equivalent., Only their
language ig different, according to the different points of view taken to describe
the photoabsorption process.

It will turn out however that the expression for the absorption .cross
section obtained by the Green's function approach is the most suitable for tackling
structural problems. In particular we shall show that, under certain conditions, the
inner shell X-ray absorption spectroscopy provides a straightforward, direct means
for obtaining structural information about higher order correlation functions in the
systems under study. In this sense geometrical information concerning bonding angles
and positional correlations around the absorbing atom can come within experimental
reach., The field of application that opens up in this way is extremely reach and it
is now time to exploit all the potentiality of the technique.

The scattering approach

In this approach the sum over the continuum of the final states is performed
first. - The energy conserving delta function selects one particular final state \pe
normalized to one state per Rydberg :

ole) = 472 (e + 1) alu]p.B v )l®

- 4+ *
where ¢ = (¢ ) (neglecting spin), in order to impose the physical boundary
conditions for the photoabsorption process [1] and ‘pin is an inner shell core state.

It is useful to treat both the atomic case and the cluster case :

Assuming fthe atomic potential to be of the muffin-tin type, the angular
momentum L=(1,m) is conserved in the scattering process. In the external region,
where V(r) = 0, the solution of the Schre¢dinger equation is :
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wL(r’.e) = JL(r) + i tlHL(r-)
where
> . + > + 2
JL(r') = Jl(kr')l’L(?'), HL(r) = hl(kr)YL(f‘), NL(r’) = nl(kr')YL(f")
= Ye and 3 (), n (x), = J (x) + in (x) are the usual Bessel, Neumann and Hankel
functions, JL. r'epresents the mcommg wave, H the scattered wave. This solution is

to be matched smoothly to the solution ClRL(r) = ClRl(r)YL(r) of the Schrodinger
equation inside the muffin-tin sphere of radius p, which is regular at the origin.

One finds, defining W [f,g] = fg' - gf', where f' = g_r b
R WELj,, R,]
t, = ¢ sing, - —21 2| -
W [h R ]
( )(D) = J:(L )(kp)cotgc - n( )(kp)
so that
K
0 () = U2 a(e+I)|(R| [w )|2[tl|"’; (2)

where we have explicitly factorized the density of the final states k/w coming from
the normalization to one state per Rydberg. For simplicity we assume that the dipole
operator B selects only one final -state, as for K-edge absorption. The generalization
only adds complication to the formulas.

b - Cluster case

We assume again that the potential is of the muffin-tin type. In this case L
is not conserved, so that now one can describe asymptotically the physical situation
as an incoming L partial wave JL(;O), referred to the center of the cluster where the
absorbing atom is located, pItis ' a set of outgoing waves having all L values,
emanating from each site j located at ﬁj with amplitude Bi(_li)

5>

q, (Fe) = 3 (F) + 1] B‘](L)H(r') (r. =r - R,)
= = L N J J

Inside the muffin-tin sphere Jj, in analogy with the atomic case, the
solution which matches smoothly with the external solution is given by

3 3 >
3 Bi(;,_) R‘E' (rj). Since the initial state is confined at site o and assuming again

K-shell photoabsorption, we find

o, (&) = #x% o (e + I)| (R @] 5.5 | vy 2 z |8 ()2 (3)

s d
As in the atomic case, Ri(r‘) is the solution of the Schrédinger equation
inside sphere j that matches smoothly to JL(;j)cotg 6“{ - NL(;J.) at the muffin-tin

radius pj and 6‘1 is the 1 wave phase shift of the potential inside sphere j. However

since now the angular momentum is not conserved and we are calculating total cross
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sections, we have to add up incoherently all amplitudes 'Bi(g) squared relating to
different L incoming waves [2].

The scattering amplitudes B:]](I;) satisfy the following equations

1,y 3 .1 o
B (L) t z GLL, B, (L) =t I}

(4)

where ti is the t-matrix of the atom located at site i, G'Y is the amplitude of
propagation of a spherical wave of angular momentum L emanating from site i1 for
ar'r-iving_)at gite j with angular momentum L' and Jiz is the amplitude of the incoming
wave JL(r‘o) when referred to site i. With the help ©f the reexpansion theorem [5] one
finds —

5] (kR )
LL' wlotr re kR, -
= 4py gt ci . gt Y (Ry) 5)
g3 L 131"(kR1')
LL' J
where CE o= ey (n)y ()Y, (2) are the Gaunt coefficients and R, 1" R, - ﬁj. It

is useful for the future -,o define GLL' 0.

Eq. (4) has a simple physical meaning. It tells that the total L wave

scattered amplitude at site i is the sum of the scattered wave due to the incident
>

JL(ro) wave plus the waves that have been scattered by all other sites j, travel from

ij

h;re to site i with amplitude GLL'

amplitude tl .

and finally get scattered at site i with

By introducing the matrices

=§,.6 . th ¢ =gl

= (T )LL' % CLwr 1 LL'

and the vectors ﬁ(&) = Bi L), 3(1:) = we can write Eq. (4) as

> >

(r-r.06) B(L) =T J(L)

10
I

The scattering approach is useful in discussing shape resonances. In this
case it happens that only one scattering amplitude Bg(L ) for a particular L becomes
big at a certain energy, all the obther amplitudes with L = Er vbeing negligible. This
means that the I—‘-r wave incoming from infinity (in a time reversed picture) can easily
overcome the eentrlf‘ugal bar‘mer‘, penetrate the cluster potential and attain a
sizable amplitude B (L )R (r' ) at the atomic core of the photoabsorber. An example is
the lr 3 r‘esonance m dlatomlc molecules (N 0 y [6]1.

The Green's function approach

In this approach one transforms Eq. (1) as :

1

a (e) = SaF (e) = 1rllm Im win p il R

> >
p.Dly, ) lin? (e +1I)a
n>o+ ‘ in [+]
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> > >

= -dn (e + I)aIn [ a%r art (P BB (m) ¢T@E,F) BB By ) (6)

vwhere (e -~ H) 6" = I or in the coordinate representation
(B re-VE)GE () =5, )

where V(;) =1 Vj(;) is the collection of the muffin-tin potentials. Since win(;) is

J
a core state localized at site o. Eq. (5) shows that we need calculate the Green's
function only for r and r' inside the muffin-tin sphere located at o.

a) Atomic case

The solution for G in this case is [3] :

¢ Py ==k IR
L

where, as before, at the muffin-tin radius p

> > >
1 RL(r') - K E R (r) SL(P') 49
> > +
RL(r) ~ JL(r)cotgél - NL(r) (regular at the origin)
SL(;) ~ JL(;) (singular at the origin)
>
smoothly in r.
Insertion of Eq. (7) into Eq. (6) gives
_ > > 2 _ 122 > >
ogp (€)= %7 (e + IDa Imk {L(R|D.D |, 0% t; = (b |P.DIR (S |P.D]w; )}

When the potential is real, R, and SL are real so that

L

ogp (€) = Bm (e + I Dok [(R|P.D|w, )]* Int, (8)

GF

Due to the optical theorem

el?=1In¢t

Eq. (8) reduces to Eq. (2)

Again we quote the result of ref [3]

L o, 00 0 [Ty - 0,2 0 (2,
G(r,r')=-k EL'RL (ry) T R, (FL) E_RL(r‘o)SL (re)

where now
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1 =1,00

00
ORI

T

o0

-1
=T -1,06 T,

- [,
With this solution
0 >

2 [e] 00 -4
oge(€) = B w (e + I)a Imk (LCRY|B.B |95, 3% <y - (5 [ 5. R)) (87 [B.D [ w50} (9

where the superscript o in wgn reminds that the core initial state is located at site
0.

Again for real potential
_ o> 2 (s} 2 _ ~1 00
ogp(e) = ¥ m (e + I ok [(R]p.D|w; )]* Im [(I-7T G 'T1 (9)

Using Eq. (4) it is possible to prove the generalization of the optical
theorem valid for the atomic case [T] :

o _ _ -1 00
E B, W|?=In[(x-7T, 6 7,17

which allows us to recover Eg. (3).

We shall see that Eq. (9) is very useful for analysing the photoabsorption
cross section in terms of multiple scattering events.

Band structure approach

In an infinite regular lattice (for simplicity we assume all sites to be
equivalent), the KKR method [8] writes the Bloch function as :

B = 1 oM@ R (P (10)
q L L L
with the same definition of RL(;) as above, n labelling the band indices.

The coefficients aL(a) satisfy the homogeneous equations

-1 _ > >
E' (b 80 = CGpo (@) o, (@ =0 (1)
where tl = 9161 sin 61 is the usual 1 wave atomic t-matrix, common to all sites,
and
> > 2 > 2 2
G (&) =% 1 ST Ioe e o7ty &,
1 |
LL N 1,3 LL jo LL

since now the second sum is independent of the initial site o.
A non trivial solution of Eq. (11) demands that

pet ||t () - G (qe) || =0
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which determines the band dispersion e=sn(a). Correspondingly Egq. (11) provides
az(a). Using the expression (10) for the final states wavefunctions. Eq. (1) gives

- 2 > > 0 2 _V_ 3 _ > 0,2 2
opg(€) = 4% k (e + I)a |(RL]p.D |win)| E @) IBZd q 8{e en(q))icL(QH
where v is the volume of the unit primitive cell.

It is now a matter of labour to show that :

rz‘(——)a [ a%as (e~ e @@} - Im 3oy J o 67 - e@y]
-1 -1,00 09Q
=Im (T, -6 I =Im1

where now site o is any site in the lattice. This last relation establishes the
sought equivalence of the band approach to the other methods,

The multiple scattering series

For simplicity we have assumed up ‘to now absorptlon from /K-shell core
states. For unpolarized absorption the generallzatlon toy, én 1n1t1al core state of 1
angular momentum is straightforward (9) For the atotiic absorotlon we Pind :

1+1 1-1

@, (¢) = (1 +1)a Tt (e} + 1 o (e)
where 161 1
& = 2 fen 2 ® 3 N
a (e) = Ny a2 (e + Io) @ sin®s, jo r Rlii(r) win(r; w
having introduced the absorption coefficient a(e) = nabu(e) and the density L of

the photoabsorber in the medium.
For a cluster, remembering Eq. (9), we have :

_1—1(e) (12)

a e) = (1+1) a e x (e) +1 ai—1(€) X

where now ai (e) indicates the atomic absorption coefficient of the photoabsorber and

1 1
21+1

le) = ] In [(I - T,G)" fp 0 o (13)

sin? 60 n a’lm lm
1
is a structure factor carrying the information about the environment. Notice that, if
G=0 (absence of environment), then xl(s) =1,

The factorization between atomic absorption and structure factor is possible
only if the potential is real. For a complex potential the more general expression
Eq. (%9a) should be used, since now RL(;) and SL(;) are complex. The physical
interpretation of the theory becomes more involved in this case. In the following we
shall only discuss the real case,

As it is, Eq. (13) is not very useful for getting some physical insight into
the photoabsorption process. However if one can perform the matrix inversion by
series
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-1 ot n
(I-T7.6 "=5§ (T.® (14)
a n=0 a

then the physical meaning of the process becomes transparent. In this case

Y@=l go=1+1 2 © (15)
n=0 n=2
with N ; .
X, (&) = 3737 ;-i-r—l-zs—i) % Im [(T, 6)°r Jlm 1m (16)

and Xé (¢) =1, xl.l‘ (e} = 0, since G is off-diagonal in the site indices. Clearly
xn(e) represents the partial contribution of order n to the photoabsorption
coefficient of the cluster under study, coming from all processes where the
photoelectron emanating from the absorbing site o is scattered n-1 times by the
surrounding atoms before escaping to free space after returning to site o. In other
words only closed paths beginning from and ending to the photoabsorbing site are
possible., This last condition is due to the fact that one is calculating total cross
sections and that the initial state is localized at site o. It is this peculiarity
that entails the site specificity of the X-ray absorption spectroscopy and makes it a
unique tool for studying structural problems and for probing higher order correlation
functions in condensed materials., In photoelectron diffraction where this condition
is not operating, the irnterpretation of the experimental data becomes more
complicated.

The development in Eq. (15) is nothing else that the familiar MS expansion
with spherical wave propagators. For example, using Eq. (16) and Eq. (5), one finds

e} R
1 - 1 21§ [¢] ! ' jr o
Xy (&) = 333 jE*o mg,m‘ Im {772 Gy gige 810 Cpige 1 !
1. { 2i8° j it 1112 e2
- (-0l m {e 13 16, eren 0§ @i (0 ) By (R, )
jeo 1! 1 00 Jo
(e) 2 +1 2 z z X z Im e21.(5 G 3! t‘}' G 3t " tj'l @ i" o
l m j'eo i Llttme Itpe lm 1'm* "LI' Tl'm' 1'm" C1n Yjege 1p

cumrm (2% 3 3 3 (aren £y, (21me1) ¢
i%0 jei 171" 1

(l

0

T

SE) BT B e {FE Rfreen ere erenmt

| Lo e}

i

l'l“l + ~
] Elm (m' o) By, kR DY, g (R,,) By (kR ) 1,.m,,<R RENCIRIARCIRE

where we have introduced 3-j and 6-j symbols as defined in the literature {10] and
+
the "reduced" Hankel function r_ll(p) :
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elf % (1+k) 1

i+ .+ 1 i Kk
(0= 5 LT R %) @

11_; (py = 1

It is possible to write down more cumbersome expressions for the higher order terms
xn(e) (n>3) using the (3n-3)-j symbols. However their practical usefulness decreases
with increasing order., It is much easier to generate them by using a MS program that
already calculates the matrix (I-T_G) and can perform the matrix inversion either
exactly or via the series expansion Eq. (14)., For application to data analysis we
wish to remark that the functional expression of the quantities X,ll(e) is quite
simple, despite the complexity of their definitioh. In fact a little reflection shows
that :

p D,
1 _ 1 n : tot [} 1 n
X, () = E A, (K, Ryy) Sin (k an + 28 + ¢ (kKR 1)
n
where the sum is over all possible paths pn of order n defined above and RtOf’ is the

. 5 n
corresponding path length. This form follows from the fact that each GIJ, carries a
factor e" ij independent of L, L', contained in. the Hankel function (see Eq. (5))
that can be factorized. By defining a new matrix

ij _ _-ikR,. ij

Gl = W G

and putting

p p

1 n . .1 n 1

A" (k, R,D) exp {i¢.(k, R} = 5—— 1) ] I 1 3

n ij n ij 21+1 {m J120 Ja2%J:  Jner Liaeslga

0 J,y . J1 pdida LJ2 Jney ©
S.i, R, &, L e A L} (19)
where the indices jk run over the particular path pn, we arrive at the expression
tot Mg
(18), with R =¥ R, . As a consequence, under the assumption that the MS

: Jid;
n i=0 iYi+
series converges, one can always fit an experimental spectrum with a series of EXAFS
like functions.

It is obviously of practical importance to find approximate expressions for
the SW propagators GIlij..' that would allow a rapid computation of the amplitude and
phase functions defined in Eq. (19). We have found that the simple approximation

c s - ~ ip, .

ij * e "ij

G, = 47 ¥ (R,.) Y, (R, .) —= ¢ (p,.) (p =k R,.)

LL’ L 13 L' ij [\ 11' 71 i i

1j J J J (20)

a ia, ., /(2p)
11 J1/2 11 .

fll,(p) = [1 + W_ ] e (qll'= 1(1+1) + 11 (1'+1))

generally reproduces quite well the exact EXAFS X;(ﬁ) term (single-scattering) both
in amplitude and phase, but falls to reproduce (sometimes by a factor of two) the
amplitude of the exact x,(e) term (double scattering). Figs. 1 and 2 illustrate this
comparison in the case of MnOu tetrahedral cluster. The usual PW approximation is
obtained by putting fll’ (p) = 1, but it can be shown to be never good, not even at



C8-20 JOURNAL DE PHYSIQUE

the highest energies. The reason is that the phase correction goes 1like
all,-/(ap) " liay >> 1, since p = kR ~ 1 by the well known semiclassical argument
of the impact parameter. See Ref. [11] for more details on this aspect, Clearly more
work needs to be done for a more accurate approximation.
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Figure 1 : Exact x12 signal and phase Figure 2 : Same as F%g. 1 for X3 signal
function (dotted curves) for Mnou and phase function ¢3.

c¢luster, compared with S.W. approxi-
mation (Eq. 20) (full lines) and P.W.
approximation (dot-dashed lines).

The importance of being able to.detect the xi(e) signals in experimental
data comes from the fact that they provide information about the n-th order
correlation lfunctions 8n(§1o"' §n-1o)' In fact what is actually measured is the
quantity <y (e)>, where the brackets indicate the configurational average with
respect to the distribution of the positions ﬁi around the reference center §0
(photoabsorber). In other words

>

@ n-=1
Gf e =1x ] [ oar e R0 X Ge, B R ) 2D

ne? ‘me1 1o n-10

That one can actually detect terms other than <xl(e)> in X-ray absorption
spectra, has been proved possible in some particular cases [12]. The real challenge
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is to deconvolute Eq. (21) to obtain the functions g . Future effort should be put
into this kind of analysis.

The question of convergence of the MS series : discussion and conclusions

The interpretation of the X-ray absorption spectra in terms of MS pathways
of - the photoelectron in the final state is meaningfull only if there is numerical
equivalence between the two sides of Eq. (14). This implies that the expansion on the
r.h.s. must converge to the 1l.h.s. relative to some éonvergence criterium. From
matrix theory one knows that absolute convergence (relative to a suitably defined
matrix norm) is ensured if p(TaG) <1.

This criterium is extremely useful since absolute convergence entails the
property that terms of order n in the series higher than a c¢ertain n_ (which can be
ver§ low in favorable cases) do not contribute appreciably to the sum. Now p(TaG) is
a continuous function of the photoelectron wave number k- = ve, which goes to zero as
k goes to infinity (since |ti|» o in this case) and tends to infinity as k approaches
zero (since GLJL is singular at k=0, due to the presence of the Hankel function in
the definition of Eq. (5)). As a consequence it must cross at least once the value
p=1. Moreover the nearer to 1 is its value, the slower is the convergence. of the
series.

The implication of the above considerations are immediate. At extremly high
energies, where | t] ~ 0, we have only atomic absorption (X ~ 0, n 2 2). At high
energies, where stlll I t] << 1, also p(TaG) <K 1 so that only the X; (g) term
contributes to give struotural information. This is the single scattering (EXAFS)
regime, that'probes only the pair correlation function. At lower energies, where
p(T_G) is still less than one and of the order of, say, one half, higher order terms
X, (e) begin to contribute to the absorption coefficient, typically n'= 3,4. This is
an intermediate MS (IMS) region. that can even span as much as 100 + 150 eV and
provides information about g, and 8. At still lower energies several things may
happen depending on the behavior of the phase shlfts Gl and the photoelectron damping
and their interplay. The spectral. radius p(TaG) may continue to rise, as the energy
approaches the edge from above, so as to reach one or stay very near to it (normal
situation). In such a case very many paths contribute to the shape of the absorption
coefficient or an infinite number of them, depending on whether p(TaG) iz less or
greater than one. This is the region of the shape resonances where the scattering
power of the environment is strong enough that it can scatter the photoelectron many
times. It might be adequate to call it full multiple scattering (FMS) region. One has
only a global information in this case. However a rather unexpected situation may
also oceur. p(IaG) may stay near one at some intermediate energies and then decrease
as the energy decreases toward the edge. This situation is encountered in the Cupper
K~edge spectrum, where in the first 50 eV above the edge the EXAFS signal x2(e) alone
is capable of reproducing the experimental spectrum and the exact band calculation
[13]. However deviations begin to show up in the energy range 50 + 200 eV [11]. This
behavior is due to the peculiarity of the relevant atomic phase shifts that are small
at low energy and cross u/2 (| tll ~ 1) at ~ 130 eV, Around this energy MS
contributions show up in the absorption coefficient.
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Summarizing we can say that at least in principle any X-ray absorption
spectrum contains all three regions mentioned above, Their order w“;th increasing
energy and their energy extent are abviously system dependent, The only feature
common to all systems is that in the limit of high energy the IMS structure should
cont inuously merge into the SS region and finally reduce to a pure atomic absorption.

The experimental situation presents additional complicating factors some of
wnich however have a simplifying effect on the shape of the absorption spectrum, with
a corresponding loss of informational content. It is clear that the finite core hole
lifetime, the limited experimental resolution, the damping of the photoelectron-in
the final state (extrinsic losses), the thermal and configurational disordei', when
present, all conjure up to reduce the size of p{(T_G) at such a point that sometimes
only the SS term survives as the dominant signal. There are already indications that
in some crystalline materials (Si, Al) lifetime effects alone are sufficient to make
the series convergent in the whole energy range except perhaps 10-15 eV near the edge
[14]. The use of the Fourier transform technique in following the organization of
crystalline order with annealing temperature in amorphous thin films of  Ge grown on a
substrate finds its rationale in this kind of considerations [15]. On the other hand
shake-up and shake-off processes of intrinsic origin tend to add features to the
spectrum that modify the expected one electron shapé. In this case the analysis in
terms of MS paths should be done after the removal of these extra features. We have
found an example of this situation in analysing the MnOu cluster [12].

In any case a careful theoretical assessment of all these effects is highly
desirable and work is in progress. In particular the a priori garantee that the MS
series is convergent gives confidence  that one can parametrize the experimental data
by a series of functions of the type shown in Eq. (18) with a well defined expression
for A_ and ¢1. This point is essential if one wish to address the problem of the

determination of the gn(ﬁi Jts for n>2. Otherwise alternative ways for analysing
photoabsorption data must be devised.
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