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THE TREATMENT OF WEAK INTENSITIES OF REFLEXION

A.J.C. WILSON

Crystallographic Data Centre, University Chemical Laboratory,
Lensfield Road, GB-Cambridge CB2 1EW, Great-Britain

Résumé - Bien que les intensités faibles posent des problé&mes
.particuliers lors de la détermination des structures cristallines,
elles portent au moins autant d'informations que les intensités
fortes et ne doivent donc pas &tre ignorées /1,2,3,4,5/. Une
réflection que est en vérité nulle ou faible peut &tre mesurée
négative parce qu'une intensité est estimée par la différence
entre les comptages dans le pic et les comptages dans le bruit de
fond et parce que chaque comptage est sujet 3 des fluctuations
statistiques (Poisson); dans le cas de la technigue de comptage
34 temps constant la distribution de probabilité de cette
différence est une fonction de Bessel modifiée /2,6/. Les métho~
des Bayésiennes /3/ peuvent étre utilisées, avec quelques
approximations, pour obtenir une estimation vraisembable de la
valeur positive correspondante. Toutefois les fluctuations
statistigues introduisent un biais lorsqu'on prend la racine
carrée de l'intensité pour obtenir le facteur de structure. La
correction du biais est facile si 1'intensité est modérée /7/
mais pose un probl&me si les intensité&s sont faibles /8,4/. On
doit distinguer précision - la reproductibilité statistique de la
détermination - et justesse - la capacité & approcher la vraie
valeur de la gquantité cherchée. Lorsque les erreurs ou défauts
systématiques du modé&le sont appréciables, la justesse de la
détermination peut &tre bien plus faible que sa précision (/19/;
comparer aussi /4/ et /10/); la légitimité statistique de la
procédure classique d'"ajustement de la pondération" est douteuse.

Abstract - Though weak intensities present special problems in crystal-
structure determination, they convey at least as much information as strong
intensities, and should not be ignored /1,2,3,4,5/. Since an intensity is
estimated as the difference between counts on peak and counts on background,
and each count is subject to statistical (Poisson) fluctuations, a reflexion
that is actually zero or small may be measured as negative; the probability
distribution of the difference is given by a modified Bessel function /2,6/
for the fixed-time counting technique. With some approximation, Bayesian
methods /3/ may be used to estimate the likely positive value in such cases.
The statistical fluctuations, however, result in a bias when the square-root
of the intensity is taken in order to obtain the structure factor.
Correction of the bias is easy when the intensity is moderate /7/, but gives
prcblems for weak intensities /8,4/. Precision, the statistical
reproducibility of a determination, must be distinguished from accuracy, the
extent to which a determination approaches the true value of the quantity
sought. When systematic errors or defects in the structural model are
appreciable, the accuracy of a determination may be much less than its
precision (/9/; compare also /4/ and /10/); the common procedure of 'adjusting
the weights' is of dubious statistical legitimacy.
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I - INTRODUCTION

When I began to work in crystallography, in 1938, it was a common joke among research
students, or rather only half a joke, that actual measurement of intensities was a
waste of effort. If a structure had m parameters, then noting m accidental absences
would give enough information to solve the structure and determine the parameters. I
believe that one or two alloy structures, considered complicated at the time, were in
fact solved by AJJ. Bradley's group by the use of this method, but I have not been able
to find a reference to it in the literature. Be that as it may, the weak reflexions
convey at least as much information as an equal number of strong ones, and should not
be ignored.

It is, or was, a comwmon practice to omit from structure refinements all reflexions for
which the observed intensity was less than two (or even three) times its standard
deviation. There seems never to have been any formal theoretical justification for
this. It is, of course, understandable that intensities measured as negative were
omitted, since they indicated imaginary structure factors, but the rule of thumb of 2&
or 36 eliminated many positive ones also. Various authors /1,2,3,4,5/ have argued (1]
on various grounds for the inclusion of weak reflexions, and French and K. Wilson /3/
have proposed a method of dealing with those measured as negative.

The recommendation of Hirshfeld and Rabinovich /1/, to include in the refinement all
intensities at their measured values, even if negative, is satisfactory for the
determination of parameters by least squares, maximum likelihood, and similar methods.
However, in many crystallographic studies, such as electron-density Fourier syntheses
or difference Fourier syntheses, it is necessary to have estimates of the structure
factors and their standard deviations, and this would appear to rule out the
possibility of using measured-as-negative intensities. "Fortunately the problems
are almost entirely due to poor statistical methodology. Instead of thanking the
data for the information that certain structure factor moduli are small, we accuse them
of assuming ‘impossible’ negative values. What we should do is cambine our knowledge
of the non-negativity of the true intensities with the information concerning their
magnitude contained in the data /3/." The French and Wilson method will be discussed
fully in section V below.

Measurements are normally subject to two types of error: random errors and systematic
errors. ‘The random errors (for example, statistical fluctuations in counting rates)
affect the reproducibility of a measurement, technically called its precision. The
systematic errors (for example, uncorrected extinction) introduce a displacement of
the measured value fram the true value, the amount of the displacement being the same
for all repetitions of the measurement; the random errors then fluctuate about the
displaced value, not the true value, The degree to which the displaced wvalue
approaches the true value is called the accuracy of the measurement. A measurement
may thus be highly precise and simultanecusly highly inaccurate. Crystal-structure
determinations may also be subject to systematic errors in calculated quantities (for
example, inadequate atomic scattering factors). A third type of error is bias, a
systematic error in a derived quantity resulting from inappropriate or inexact
treatment of the raw data.

[1] A paper by Petit, Lenstra and Van Loock /11/ might, at a careless
reading, be taken as advocating the opposite. It deals, however, with
a means of economizing computer time before the structure is
completely determined, and ends with an endorsement of the
recommendations of Hirshfeld & Rabinovich /1/ for the final
refinement, )
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The present paper reviews a series of topics that may at first sight seem unrelated.
The connecting threads are (i) the problems are most acute for weak reflexions, though
some of them affect strong reflexions also, and (ii) all are statistical. We consider
in turn bias, origin of negative cbserved intensities, Bayes' theorem, the French and
Wilson method, and precision versus accuracy.

II - BIAS IN STRUCTURE DETERMINATION

The origin of bias is mathematical rather than experimental; it is ‘Unnoticed
inappropriatenessof mathematical techniques, whereby random errors, of mean value zero
in the raw data, become a systematic bias in the derived quantities' /12/.
Intensities measured by counting are in principle unbiased. This property of absence
of bias is preserved by any linear transformation, such as (i) subtraction of
background; (ii) division by counting time to obtain a counting rate; and (iii)
division by trigonometrical factors; but is lost if any non-linear transformation is
applied to the cbserved intensity. The two non-linear transformations commonly used
in crystallography are (i) taking the square root of the intensity in order to obtain
the modulus of the corresponding structure factor /7/; and (ii) using weights that
depend on the intensity or its square root /12,4/.

The 'observed' structure factor can be written

Eg - _I_1/2 - [£+§_]1/2 , )
where I is the cbserved intensity, J is the 'true' intensity, and e is the statistical
fluctuation. If the fluctuation is small in comparison with the intensity, the square
root can be expanded as a power series:

g, o= 32+ q/ar% - aegdi2 . L 2)
the mean value of e in the second term is zero, but the mean value of 22 is the
variance of I. A better estimate of F is therefore

- 1/2 -3/2

Foorr = 172 + /eir¥2%%1n) + ... . 3)
Unfortunately this correction fails for small observed intensities, for which the
methods of Rees /8/ and French and Wilson /3/ may be applicable. This bias, if
uncorrected, would be expected to lead to some loss of definition in electron-density
maps, somewhat low values of scaling factors, and samewhat high values of thermal
parameters, A fuller discussion and many references will be found in /4/.

The bias in parameters introduced by the use of weights depending on the observed
and/or calculated intensity may be seen in the following way. In least-squares
refinement the parameters are determined by minimizing the sum

s = ) wlzmky - g |?, (4)

where G is the calculated intensity and w is a weight, by differentiating § with
respect to each of the parameters in turn and equating the results to zero. ILet X be
the amount by which some desired parameter differs from its unbiased value. The sum S
may be expanded in powers of x:

S(X) = 8(0) + S.(00x + S (0)x/21 4 ..., (5)
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where the subscripts denote differentiation and the derivatives are evaluated at x = O.
The value of x giving minimum S is not @ but

x = =~8./ S (6)

&

and the minimum value of

o

is not $(0) but
Smin = S0 - s¥as, o+ ... (7)

The calculated intensity G is a function of x, and in some programs w may depend on G.
Since dw/dx = (Aw/dG}(3G/dx), differentiation of (4) gives

Se = ) g (1-6)2 - 2(I-6)G,] (8)
Syx = Z [{_v_vgé + ygg)g}(l—ﬁ)z
- {4vSo+ Gy, HI-G)
2
+ ZEG_K_] . (9)
The important term [2] in the expression for Syx is the final one, since the others

vanish with (I-G), while it remains practicdlly constant. For a well refined
structure it is therefore sufficient to write

2 . 10)
Sec - 2) ‘

0

The expression for S, needs closer attention, If e is the actual statistical
fluctuation in a parficular observation, and d is the actual amount by which the
calculated intensity differs from the true value (because of defects in the model
etec.), I -G = e - d, and Equation (8) becomes

S, = ) lugle?-2ed:d?) - 2u(e-d)1Gy - (1)

Depending on the refinement program used, the weights may involve the observed or the
calculated intensities -- or both. Expanding w as a power series in e and d, taking
expected values and using Equation (6) ultimately gives for the expected value of the
parameter

x> = - (2 Z_wgé]"1 Z [(V_IQ—ZELMQ‘?) + 33_(24;1_24- 2d + "']“G'ZE . (12}

The temms in d express the errors in the parameter resulting from defects in the model.
That resulting fram statistical fluctuations is proportional to

(g - 2up)<e® = (ug - 20p)0F ; (13)

we see that the bias resulting from using calculated intensities in the weights is of
the opposite sign to the bias resulting from using observed intensities. The bias
can thus be removed, to the second order in g, by using the weighted mean (I + 2G)/3
instead of I or G in any expression for the weights /12/.

[2] There is a misplaced superscript in the corresponding equation in
reference /12/. This does not affect any of the subsequent equations.
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Does omission of observations introduce bias ? Prince and Nicholson /5/ argue that
'Actually, omitting a weak reflection, or any [3] reflection, cannot bias the parameter
estimates'. One can accept this immediately for reflexions omitted at random, but one
wonders about systematic omissions, of discrepant reflexions in the context of
robust/resistant methods /9/, or of weak reflexions in the present context. It seems
unlikely, for example, that the systematic omission of weak reflexions is without
effect on the thermal parameters.

ITII - ORIGIN OF NEGATIVE MEASURED INTENSITIES

In the absence of disturbing influences, the number of counts recorded during the
counting interval in the fixed-time mode fluctuates in accordance with the Poisson
probability distribution; the probability of observing N, counts is

N
Plo) = exm(-NN YN! , (14)

where N is the true number of counts to be expected. The measured intensity of a
reflexion depends on the difference (say R) between the 'true' number of counts T
expected when the diffractometer is set to receive the reflexion, and the 'true' number
of counts B when the diffractometer is set to receive the immediate background:

R = T - B; (15)

for simplicity it is assumed that the counting times for reflexion and background are
the same. The observed values T, and B, will fluctuate in acocordance with Equation
(14), so that the observed value R, will sametimes be negative, especially when T is
about the same size as B -~ that i35, for weak reflexions. It is easy to write the
formal expression for the probability of any particular value of Ryt

PR, = ) PIIIB(EG) (16)

the summation being over all values of B, and To

related by

B - I - an
The summation has been carried out by Skellam /13/, and leads to an expression in terms

of modified Bessel functions of the first kind:

R

BRy) = exwl~(B 4D IY/B) L l[z@)‘/zl . (18)
- =

If B and T are not too small this does not differ very greatly from a normal

distribution with mean R and variance

F® = T+ B (19)

it is, however, somewhat skew, has a positive 'excess', and large values of Ror positive
or negative, are rather more likely than for a normal distribution. If theé counting
times for reflexion and background are not equal, or if fixed-count rather than fixed-
time methods are used, the distributions become more complicated /2,6/. The
differences from normality seem to remain as described for equal-time counting.

[3] Ttalicized in the original.
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IV - BAYES' THEOREM [4]

The combination of information about the probability distribution of intensities with
the information that a certain reflexion has been measured and found to have. the value
I is made by the use of Bayes' theorem., Bayes' theorem is of very general application,
but for concreteness in the present context it will be expressed in terms of intensity
distributions, It is probably best to state it in words before putting it in
mathematical form, Before making a measurement we expect the probability density
distribution of the true intensity J to have a certain form, for example the centric or
the acentric distribution /16/, or the distribution appropriate for the space group
and chemical constitution /17,18/; this is called the a-priori probability
distribution of J. We make the measurement I by a method known to be subject to
statistical fluctuations, the probability density distribution of the fluctuations
being known as a function of the intensity, for example a normal distribution with mean
J and known variance 02, or the distribution discussed in the preceding section -- or
one even more complex /6/. The measurement having been made, the theorem asserts that
the probability distribution of the true intensity is proportional to the product of
(i) the probability of getting I when the true intensity is J, and (ii) the a-priori
probability of the intensity J. The result is called the a-posteriori
probability density distribution of J.

Since French and Wilson /3/ have been the main proponents of this procedure it is
convenient to adopt their symbols as far as practicable, We shall represent
probability distributions by P,(.), the subscript indicating the quantity that is the
principal variable in that disfribution; other quantities appearing are parameters of
the distribution for the time being. A vertical bar followed by the symbol of a
quantity x is read 'given that the variable x has the particular value x'. We thus
have, for the a-priori distribution of the true intensity J:

Py()as , (20)
for the distribution of the measured intensity I, given J:
Pr(z]3)ar , (21)

and for the a-posteriori probability distribution of the true intensity J:

ByI|DAT = KRp(I|DEs(DAT , (22)

the proportionality oconstant K being determined by the fact that the total
a-posteriori probability is unity:

oo .
k§  malpp@a - 1. (23)

[4] Bayes' theorem is a sitple application of the multiplication rule for
probabilities [for a derivation see, for example, /14/, pp. 212-218],
and is disputed by no one. Bayes' postulate, the Principle of the
Equidistribution of Ignorance, makes many statisticians see red. Both
are traced back to an early paper by Bayes /15/, called An essay
towards solving a Problem in the Doctrine of Chances. It is rather
difficnlt to extract them from the mass of verbiage in the original.
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V - THE FRENCH AND WILSON PROCEDURE

French and Wilson /3/ take as the intensity to be used in the structure determination
the expected value of J fram Equation (3):

0o
@ = EjI|D =Sog%@yq. (24)
with variance
b 2
caln = | - @rpeina . (25)
In their procedure they make three assumptions: (i) the data-reduction procedures used
are such that I is an unbiased estimate [5] ; (ii) that the distribution of I is normal
with mean J; and (iii) that the variance of I has been properly assessed, with
allowance not only for counting statistics, but also for instrumental instability
ete. /19,20/. There remains the choice of a-priori distributions for Pj(J). French
and Wilson considered three, all zero for negative values of J and having the following
forms for J positive:
(i) the improper [6] distribution
Py = 1; (26)
(ii) the acentric distribution
PByD) = T exo(-3/3) ; (7
and (iii) the centric distribution
@ = e 2ep(1/2s) , (28)
where ¥ is the local average intensity. Both the acentric and the centric

distributions, but especially the latter, give a high a-priori probability to weak
reflexions.

Obviously computer programs are necessary for carrying out the integrations in
Equations (24) and (25); some are described in /3/. With more complex programs these
integrations could be performed with specimen-specific a-priori distributions of
intensity /18,19/ and non-normal fluctuation distributions /6/.

French and Wilson propose

® = ' E;(7'/2|D)
2 )
- §, &pinaz, (29)

as an almost unbiased estimate of the true structure factor, and

(oo}
JEln = § @'/2 - /2% 3lDas . (30)

[5] The conditions under which assumption (i) is valid were discussed
elsewhere by Tickle /21/ and French /22/.

[6] See the Principle of the Equidistribution of Ignorance in footnote
[4].
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as an estimate of its variance. French {private commnication) believes that there
may be a small positive bias in the estimate of the structure factor, but it is clearly
a better estimate than that given by Equation (3) when F is small.

VI - PRECISION versus ACCURACY

In spite of the intuitively attractive interpretation of the results of unweighted
least squares —- the best least-squares fit between the observed and the calculated
electron densities (Patterson functions) /23/ —- , the method is not greatly used in
structure determination, for the following reason. The intensity measurements are of
varying precision; their variances depend in a more or less complicated fashion on the
number of counts involved in determining them /2,6,19,20/. It is then statistical
practice to weight each tem in Equation (4) by a factor inversely proportional to the
variance of that temm; it can be shown that if this is done the variance of each
parameter is less than the variance that it would have if any other method of
refinement were adopted {7] . This reduction of the estimated standard deviations of
the derived parameters is the first advantage of correctly weighted over unweighted
least squares; the second will be discussed in the next paragraph. - The disadvantages
are (i) the estimation of correct weights is not easy, and (ii) the function fitted by
least squares is not the actual Patterson function or the electron density, but a
fictitious electron density (Patterson function) /4/ in which each coefficient of the
Fourier series is multiplied by the square root of the weight. If the model is
perfect, in the sense that it has the same functional form as the true function, and
differs from it only in that the parameters have to be adjusted, this distortion of the
function will have little effect on the parameter estimates. If the model is
defective, however, the estimates will be biased in the direction of fitting the
fictitious density, distorted by the weights, rather than being unbiased estimates of
the true parameters. Bias introduced by an explicit dependence of the weights on I or
G /12/ has been discussed in section IT above.

The second advantage of correctly weighted least squares -- shared with maximum
likelihood -~ is that of checking whether there are significant remanent defects in
the model (remanent systematic errors). If statistical fluctuations are the only
source of difference between I and G, the mean value of |I ~ GJ2 will be close to.the
variance of I, and the weighted sum,

s = %; |Z(bk1) - G(hk1) |2/ (D) (31)

should be close to the number of terms summed -~ actually a little less, since
refinement makes G as close as possible to the I actually observed, and not as close as
possible to the true value. The expected value of S, then, is not n, the number of
terms in the sum, but

<> = n-m, (32)

where m is the number of parameters determined; for discussion and references see /10/.
The standard deviation of the sum S is expected to be

G = [2(2-@11/2 (33)

approximately /10/, so that if the actual value of S exceeds

[7] For the necessary qualifications of this broad statement see Prince
/9, Chapter 6/, Such parameters are 'best linear unbiased estimates’'.
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$ +kog = n-m+kog = n-m+ki2(mwi/? (34)
(where k = 2 or 3, according to taste), one of two conclusions must follow: either (i)
there are serious defects in the model (remanent systematic errors); or (ii) the
statistical fluctuations have been seriously underestimated. The first inter-
pretation has been generally accepted by crystallographers interested in the accuracy
of the determination of lattice parameters /24,25,26,27,28,29/, and has in fact led them
to improve certain corrections for systematic error /30,31,32/. Crystallographers
interested in structural parameters have, on the whole, preferred the second
interpretation, and have adjusted the weights by a factor designed to reduce S to an
acceptable value. This practice may have arisen from a confusion between precision
(statistical reproducibility) and accuracy (closeness to the true value), but it is
more comfortable to postulate larger random errors than to attempt to improve the
model or to reduce systematic errors, It would seem that adjusting the weights is
legitimate only when there are objective reasons -- not mere discrepancy between
observation and calculation -- for believing that the variances have been
underestimated. For a discussion, see Prince /33/ and Rollett /34/.
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