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THE TREATMENT OF WEAK INTENSITIES OF REFLEXION 

A.J.C. WILSON 

Crystallographic Data Centre, University Chemical Laboratory, 
Lensfield Road, GB-Cambridge CB2 lEW, Great-Britain 

Resume - Bien que les intensites faibles posent des problSmes 
particuliers lors de la determination des structures cristallines, 
elles portent au moins autant d'informations que les intensites 
fortes et ne doivent donc pas Btre ignorees /1,2,3,4,5/. Une 
reflection que est en verite nulle ou faible peut Btre mesuree 
negative parce qu'une intensite est estimee par la difference 
entre les comptages dans le pic et les comptages dans le bruit de 
fond et parce que chaque comptage est sujet a des fluctuations 
statistiques (Poisson); dans le cas de la technique de comptage 
5 temps constant la distribution de probabilite de cette 
difference est une fonction de Bessel modifiee /2,6/. Les metho- 
des BayGsiennes /3/ peuvent Btre utilisees, avec quelgues 
approximations, pour obtenir une estimation vraisembable de la 
valeur positive correspondante. Toutefois les fluctuations 
statistiques introduisent un biais lorsqu'on prend la racine 
carree de lfintensit& pour obtenir le facteur de structure. La 
correction du biais est facile si l'intensite est modgree /7/ 
mais pose un problgme si les intensites sont faibles /8,4/. On 
doit distinguer precision - la reproductibilite statistique de la 
determination - et justesse - la capacite 5 approcher la vraie 
valeur de la quantite cherchee. Lorsque les erreurs ou defauts 
syst6matiques du modSle sont appreciables, la justesse de la 
determination peut Btre bien plus faible que sa precision (/19/; 
comparer aussi /4/ et /lo/); la legitimite statistique de la 
procedure classique df"ajustement de la ponderation" est douteuse. 

Abstract - Though weak intensities present special problems in crystal- 
structure determination, they convey at least as much information as strong 
intensities, and should not be ignored /1,2,3,4,5/. Since an intensity is 
estimated as the difference between counts on peak aral counts on background, 
and each count is subject to statistical (Poisson) fluctuations, a reflexion 
that is actually zero or small may be measured as negative; the probability 
distribution of the difference is given by a dified Bessel function /2,6/ 
for the fixed-time counting technique. With sane approximation, Bayesian 
methods /3/ may be used to estimate the likely positive value in such cases. 
The statistical fluctuations, however, result in a bias when the square-root 
of the intensity is taken in order to obtain the structure factor. 
Correction of the bias is easy when the intensity is moderate /7/, lmt gives 
problems for W intensities /8,4/. Precision, the statistical 
reproducibility of a determination, must be distinguished fran accuracy, the 
extent to which a determination approaches the true value of the quantity 
sought. When systematic errors or defects in the structural W e 1  are 
appreciable, the accuracy of a determination may be much less than its 
precision (191; carrpare also /4/ and / lo / ) ;  the ccannon procedure of 'adjusting 
the weights' is of dubious statistical legitimacy. 
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When I began to work in crystallography, in 1938, it was a ccmnon joke among research 
students, or rather only half a joke, that actual measurement of intensities was a 
waste of effort. If a structure had g parameters, then noting g accidental a?xences 
would give enough information to solve the structure and determine the parameters. I 
believe that one or two alloy structures, considered canplicated at the time, were in 
fact solved by AJ. Bradley's group by the use of this method, but I have not been able 
to find a reference to it in the literature. Be that as it may, the weak reflexions 
convey at least as much information as an equal number of strong ones, and should not 
be ignored. 

It is, or was, a c a m n  practice to d t  from structure refinements all reflexions for 
which the observed intensity was less than two (or even three) times its standard 
deviation. There seems never to have been any formal theoretical justification for 
this. It is, of course, understandable that intensities measured as negative were 
anitted, since they indicated imaginary structure factors, h t  the rule of thumb of 2a 
or 3 0  eliminated many positive ones also. Various authors /1,2,3,4,5/ have argued [ I  ] 
on various grounds for the inclusion of weak reflexions, and French and K. Wilson /3/ 
have proposed a method of dealing with those measured as negative. 

The recomnendation of Hirshfeld and Rabinwich /I/, to include in the refinemnt all 
intensities at their measured values, even if negative, is satisfactory for the 
determination of parameters by least squares, m x i m m  likelihood, and similar methcds. 
Hawever, in many crystallographic studies, such as electron-density Fourier syntheses 
or difference Fourier syntheses, it is necessary to have estimates of the structure 
factors and their standard deviations, and this would appear to rule out the 
possibility of using measured-as-negative intensities. "~ortuMtely the problems 
are almost entirely due to poor statistical methodology. Instead of thanking the 
data for the information that certain structure factor mduli are small, we accuse them 
of assuming 'impossible' negative values. What we should do is combine our knwledge 
of the non-negativity of the true intensities with the infonnation concerning their 
magnitude contained in the data 131." The French and Wilson method will be discussed 
fully in section V below. 

Measurements are normally subject to two types of error: randan errors and systematic 
errors. The randan errors (for example, statistical fluctuations in counting rates) 
affect the reproducibility of a measurement, technically called its precision. The 
systematic errors (for example, uncorrected extinction) introduce a displawment of 
the measured value £ran the true value, the amount of the displacement being the same 
for all repetitions of the measurement; the randan errors then fluctuate abut the 
displaced value, not the true value. The degree to which the displaced value 
approaches the true value is called the accuracy of the measurement. A measurement 
m y  thus be highly precise and simultaneously highly inaccurate. Crystal-structure 
determinations may also be subject to systemtic errors in calculated quantities (for 
example, inadequate atanic scattering factors). A third type of error is bias, a 
systematic error in a derived quantity resulting frcm inappropriate or inexact 
treatment of the raw data. 

11 I A paper by Petit, Lenstra and Van Loock /I 1 / might, at a careless 
reading, be taken as advocating the opposite. It deals, however, with 
a m a n s  of eaonaniziriy acmplter time before the structure is 
completely determined, and ends with an endorsement of the 
recamendations of Hirshfeld & Rabinovich /1/ for the final 
refinement. 



The present paper reviews a series of topics that may at first sight seem unrelated, 
The connecting threads are (i) the problems are most acute for weak reflexions, though 
sane of them affect strong reflexions also, arid (ii) all are statistical. We consider 
in turn bias, origin of negative observed intensities, Bayes' theorem, the French and 
Wilson method, and precision versus accuracy. 

I1 - BIAS IN S'I'RUCNRE DEXWMINATION 

The origin of bias is mathematical rather than experimental; it is 'Unnoticed 
inappqriatenessof mathematical techniques, whereby randan errors, of mean value zero 
in the taw data, becane a systematic bias in the derived quantities' 1121. 
Intensities measured by counting are in principle unbiased. This property of absence 
of bias is preserved by any linear transformation, such as (i) subtraction of 
background; (ii) division by counting time to obtain a counting rate; and (iii) 
division by trigonanetrical factors; but is lost if any non-linear transformation is 
applied to the observed intensity. The two non-linear transformations m n l y  used 
in crystallography are (i) taking the square root of the intensity in order to obtain 
the modulus of the corresponding structure factor 171; and (ii) using weights that 
depend on the intensity or its square root /12,4/. 

The 'observed' structure factor can be written 

where 2 is the observed intensity, J is the 'true' intensity, arid g is the statistical 
fluctuation. If the fluctuation is mall in canparison with the intensity, the square 
root can be w e d  as a p e r  series: 

the mean value of g in the second term is zero, but the mean value of e2 is the 
variance of I. A better estimate of F is therefore 

- + (1/8)~-~/~62(~) + ... . h r r  - - (3) 

Unfortunately this correction fails for mall observed intensities, for which the 
p t h c d s  of Rees /8/ and French and Wilson /3/ may be applicable. This bias, if 
uncorrected, would be expected to lead to sane loss of definition in electron-density 
maps, sanewhat law values of scaling factors, and sanewhat high values of thermal 
parameters. A fuller discussion and many references will be found in /4/. 

The bias in parameters introduced by the use of weights depending on the observed 
and/or calculated intensity may be seen in the following way. In least-squares 
refinement the parameters are determined by minimizing the sum 

where is the calculated intensity and w is a weight, by differentiating 3 with 
resped to each of the p m t e r s  in turn and equating the results to zero. Let x be 
the amount by which sane desired v t e r  differs £ran its unbiased value. The sum 
may be expded in pwers of g 
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where the subscripts denote differentiation and the derivatives are evaluated at x = 0. 
The value of x giving minimum 2 is not 0 but 

and the minimum value of is not S(0) but 

The calculated intensity 5 is a function of 5 and in some programs  my depend ong. 
Sine dw/& - = (&Ids) (ds/@), differentiation of (41 gives 

The important term [21 in the expression for g,, is the final one, since the others 
vanish with (E), while it remains practicaTly constant. For a well refined 
structure it is therefore sufficient to write 

The expression for S, needs closer attention. If e is the actual statistical 
fluctuation in a parflcular observation, and d is the actual amount by which the 
calculated intensity differs from the true value (because of defects in the model 
etc.), I - G = 2 - and Equation (8) becanes - 

lkpending on the refinement program used, the weights m y  involve the observed or the 
calculated intensities -- or both. Expanding w as a pmer series in 2 and 3 taking 
expected values and using Equation (6) ultimately gives for the expected Value of the 
parameter 

The terms in fi express the errors in the parameter resulting f m  defects in the model. 
That resulting £ran statistical fluctuations is proportional to 

we see that the bias resulting £ran using calculated intensities in the weights is of 
the opposite sign to the bias resulting £ran using observed intensities. The bias 
can thus be removed, to the seoond order in 3 by using the weighted mean (L + 26)/3 
instead of 2 or g in any expression for the weights 11 21. 

[21 There is a misplaced superscript in the corresponding equation in 
reference 1121. This does not affect any of the subsequent equations. 



Does omission of observations introduce bias ? Prince a d  Nicholson /5/ aryue that 
'~ctually, dtting a weak reflection, or any [31 reflection, cannot bias the parameter 
estimates'. One can accept this imnediately for reflexions emitted at random, but one 
wonders about systematic omissions, of discrepant reflexions in the context of 
robust/resistant methods /9/, or of weak reflexions in the present context. It seas 
unlikely, for example, that the systematic omission of weak reflexions is without 
effect on the thermal parameters. 

I11 - ORIGIN OF NM;ATIVE MEASURED INTENSITIES 

In the absence of disturbing influences, the number of counts recorded during the 
counting interval in the fixed-time mode fluctuates in accordance with the Poisson 
probability distribution; the probability of observing & counts is - 

where 5 is the true number of counts to be expected. The measured intensity of a 
reflexion depends on the difference (say g) between the 'true' number of counts T 
expected when the diffractmeter is set to receive the reflexion, arid the 'true' n m k r  
of counts B when the diffractcsneter is set to receive the immediate background: 

for simplicity it is assumed that the counting times for reflexion and background are 
the same. The observed values % and E& will fluctuate in accordance with Equation 
(1 4) ,  so that the observed value R wilrscmetimes be negative, especially when T is 

-o_ about the same size as g -- that IS, for weak reflexions. It is easy to write the 
formal expression for the probability of any particular value of - 

g ( V  = g(%)o)~(%) P (16) 

the sumnation being over all values of B and T related by 
-o_ -2 

The sumnation has been carried out by Skellam /I 31, and leads to an expression in terms 
of d i f  ied Bessel functions of the first k i d  

If B and T are not too small this does not differ very greatly from a normal 
.distribution with mean 11 and variance 

it is, however, scmewhat skew, has a positive 'excess', arid large values of % positive 
or negative, are rather more likely than for a normal distribution If thi counting 
times for reflexion arid background are not equal, or if fixed-count rather than fixed- 
time methods are used, the distributions becane more canplicated /2,6/. The 
differences £ran normality seem to remain as described for equal-time counting. 

.................... 
[ 3 I Italicized in the original. 
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The cunbination of information about the probability distribution of intensities with 
the information that a certain reflexion has been measured and found to have the value 
I is made by the use of Byes' theorem Byes' theorem is of very general application, - 
but for concreteness in the present context it will be expressed in terms of intensity 
distributions. It is probably best to state it in words before putting it in 
mathematical form Before making a measurement we expect the probability density 
distribution of the true intensity J to have a aertain form, for example the centric or 
the acentric distribution 1161, or the distribution appropriate for the space group 
and chemical constitution 117,181; this is called the a-priori probability 
distribution of J. We make the measurement I by a method known to be subject to 
statistical fluctuations, the probability density distribvtion of the fluctuations 
being knmn as a function of the intensity, for example a normal distribution with man 
J and known variance 8, or the distribution discussed in the preceding section -- or - 
me even more q l e x  161. The measurement having been made, the theorem asserts that 
the probability distribution of the true intensity is proportional to the prcduct of 
(i) the probability of getting Iwhen the true intensity is & and (ii) the a-priori 
probability of the intensity 3. The result is called the a-posteriori 
probability density distribution of J. 

Since French and Wilson /3/ have been the main proponents of this procedure it is 
convenient to adopt their symbols as far as practicable. We shall represent 
probability distributions by $(.), the subscript indicating the quantity that is the 
principal variable in thatdisEibution; other quantities appearing are parameters of 
the distribution for the time being. A vertical bar followed by the symbol of a 
quantity II is read 'given that the variable x has the particular value x'. We thus 
have, for the a-ptiori distribution of the true intensity J: 

for the distribution of the msured intensity 2, given J: 

and for the a-posteriori probability distribution of the true intensity J: 

the proportionality constant K being determined by the fact that the total 
a-posteriori probability is unity: 

[4] Bayes' theorem is a sirS@le application of the multiplication rule for 
probabilities [for a derivation see, for example, 11 41, pp. 21 2-21 81, 
and is disputed by no one. Byes' pstulate, the Principle of the 
@distribution of Ignorance, makes many statisticians see red. Both 
are traced back to an early paper by Byes 1151, called An essay 
tawards solving a problem in the Doctrine of Chances. It is rather 
difficult to extract them £ran the mass of verbiage in the original. 



V - THE FRENCH AND WILSCN 

French and Wilson /3/ take as the intensity to be used in the structure determination 
the w e d  value of J from Equation (3 ): 

with variance 

In their procedure they make three assumptions: (i) the data-redudion procedures used 
are such that I is an unbiased estimate 151 ; (ii) that the distribution of 2 is normal 
with mean 3 and (iii) that the variance of I has been properly assessed, with 
allowance not only for counting statistics, but also for instrumental instability 
etc. 11 9,201. There remains the choice of a-priori distributions for %(J).  French - 
and Wilson considered three, all zero for negative values of J and havingthe following 
forms for J positive: 

(i) the improper [6 ] distribution 

P (2) = 1 ; 
J_ 

(ii) the acentric distribution 

and (iii) the centric distribution 

where 1 is the local average intensity. Both the acentric and the centric 
distributions, but especially the latter, give a high a-priori probability to weak 
ref lexions. 

Obviously mcrputer programs are necessary for carrying out the integrations in 
Equations (24) and (25); sane are described in 131. With more canplex programs these 
integrations could be pedormed with specimen-specific a-prid distributions of 
intensity 11 8,191 and non-nonnal fluctuation distributions 161. 

French d Wilson prOpcXe 

as an almost unbiased estimate of the true structure factor, and 

I51 The conditions under which assumption (i) is ~ l i d  were discussed 
elsewhere by Tickle 121 / and French 1221. 

[61 See the Principle of the Equidistribution of Ignorance in footnote 
141. 
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as an estimate of its variance. French (private ocmnunication) believes that there 
may be a -11 positive bias in the estimate of the structure factor, but it is clearly 
a better estimate than that given by Equation (3) when F is small. 

In spite of the intuitively attractive interpretation of the results of unweighted 
least squares -- the best least-squares fit between the observed and the calculated 
electron densities (Patterson functions) /23/ -- , the mathod is not greatly used in 
structure determination, for the following reason. The intensity measurements are of 
varying precision; their variances depend in a more or less complicated fashion on the 
number of munts involved in determining them /2,6,19,20/. It is then statistical 
practice to weight each term in Equation ( 4 )  by a factor inversely proportional to the 
variance of that tern; it can be sham that if this is done the variance of each 
parameter is less than the variance that it would have if any other method of 
refinmt were adopted [71 . This reduction of the estimated standard deviations of 
the derived parameters is the first advantage of correctly weighted over unweighted 
least squares; the second will be discussed in the next paragraph. The disadvantages 
are (i) the estimation of correct weights is not easy, and (ii) the function fitted by 
least squares is not the actual Patterson function or the electron density, but a 
fictitious electron density (Patterson function) /4/ in which each coefficient of the 
Fourier series is multiplied by the square root of the weight. If the model is 
perfect, in the sense that it has the same functional form as the true function, and 
differs fran it only in that the parameters have to be adjusted, this distortion of the 
function will have little effect on the parameter estimates. If the model is 
defective, hawever, the estimates will be biased in the direction of fitting the 
fictitious density,distorted by the weights, rather than being unbiased estimates of 
the true parameters. Bias introduced by an explicit dependence of the weights on 2 or 
G /12/ has been discussed in section I1 above. - 

The second advantage of correctly weighted least squares -- shared with rnaxirmun 
likelihood -- is that of checking whether there are significant remanent defects in 
the model (remanent systematic errors). If statistical fluctuations are the only 
source of difference between 2 and 3 the mean value of )I - d2 will be close to the 
variance of 3 and the weighted sum, 

should be close to the number of terms sum& -- actually a little less, since 
refinement makes 5 as close as possible to the 2 actually &served, and not as close as 
possible to the true value. The expected value of 5 then, is not 11, the number of 
terms in the sum, but 

where m is the number of pxameters determined; for discussion and references see /I O/. 
The standard deviation of the sum S is expected to be 

approximately 11 0/, so that if .the actual value of S ex- 

[7 ]  For the necessary qualifications of this broad statanent see Prince 
19, Chapter 6/. Such parameters are 'best linear unbiased estinntes'. 



(where k = 2 or 3, according to taste), one of two conclusions must follau: either (i) 
there are serious defects in the model (remanent systemtic errors); or (ii) the 
statistical fluctuations have been seriously underesthted. The first inter- 
pretation has been generally accepted by crystallographers interested in the accuracy 
of the determination of lattice parameters /24,25,26,27,28,29/, and has in fact led them 
to improve certain corrections for systematic ermr /30,31,32/. Crystallographers 
interested in structural parameters have, on the whole, preferred the second 
interpretation, and have adjusted the weights by a factor designed to reduce to an 
acceptable value. This practice may have arisen £ran a confusion between precision 
(statistical reproducibility) and accuracy (closeness to the true value), but it is 
more canfortable to postulate larger random errors than to attempt to hprove the 
model or to reduce systematic errors. It would seem that adjusting the wights is 
legitimate only when there are objective reasons -- not mere discrepancy between 
observation and calculation -- for believing that the variances have been 
underestimated. For a discussion, see Prince 1331 and Rollett 1341. 
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