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I - INTRODUCTION

We study the effect of deterministic disorder on the vibrational densi-
ty of states and modes of a one dimensional elastic chain, To this end,
we use automatic sequences and seguences generated by a substitution
operating on a two letter alphabet ((0,1) or (a,b)) which have been
investigated and used by harmonic analysts and number theoreticians

/1, 2/. We give two examples :

1) The Fibonacci sequence generating a "1ID Penrose tiling" (without
coloured vertices). The substitution ¢ is defined as

g(a) = ab

g (b) abb

It has non constant length, the sequence generated by repeatedly apply-

ing 0 1is dquasi periodic, Note that the usual 2D Penrose tiling can be
generated by a substitution ¢ operating on a larger alphabet.

2) The Thue-Morse sequence where ¢ is defined by

gf(a) = ab
o (b)

o* (a)

]

ba and for instance

abbabaabbaababba

is not quasi-periodic and called automatic because it can also be gene-
rated by travelling on the following 2-automaton starting from a :

the fifth term of the sequence, (which has a zerotb term) is obtained

using the decomposition in base 2 of 5 : 10Ll. (The result is a). All

these sequences are completely deterministic ; they have zero entropy,/3/
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Recently, the effect of guasi-periodic sequences on the properties of
the spectrum of certain Schrddinger operators /4/ (for a review, see
/5/) and on the vibrational /6/ and electronic modes of discrete one

dimensional chains has been widely investigated. We chose £o‘concen—

trate, instead, on the non quasi-periodic Morse seguence.

I1 - THE "QUASI-ALLOY" MODEL

We étudy a chain of N = 2" masses and identical springs, with two

different kinds of masses mg and m .

mj_1 rnj mj+1
Oyrr @ mmr @Oy @ Yy Oy O ™r @

K K K K K K K

The sequence of masses {mj} is such that the indices 0 and Ll are dis-
tributed according, here, to Morse sequence. We coined the name of
"quasi—alloY" for this class of models by analogy with gquasicrystal
models where properties are distributed after Fibonacci or Fibonacci-
like sequences, The uj being displacements, we look for time stationa-

ry solutions of

dzuj
1 m, = K(u., - u, - (u., - u. hence
(1) 5 d{ ( j+1 5 ( i 3—1))

m] 2
2y -~ - W uj = uj+l + uj—l - 2u

; K _w? )
Let my = pym, wé == x==;;, po = 1, p; < 1, then one has
o
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(3) u. + u.

S+1 -1 T (2 - pjx) u, = 0

3
The relationship to a tight~binding model for electrons will be analvsed
elsewhere /7/.
We can write, using a transfer matrix formalism /8, 17/

u, u. 2=-p.x ~1 u,

i i €3 3

(4) = Tj(X) =

uj uj_l 1 0 u
with det (Tj(x))= 1 ; then

u u

pt+l 1

u, To Tp-1 Tpop =os T3 T2 Tit g

(5)

ft

vy

[

M (x
p( ) N
o
When Mp has eigenvalues of modulus 1, propagation may occur

e'B ‘ 0
{(6) Mo . and

p 0 e-lB

(7 cos B = % Tr Mp(w?)

where Mp(wz) is a polynomial of degree p in w? (or x) and B charac-
terizes the rotation of the wave function phase and plays the rd&le

of the wave number in the periodic case. One then obtains the analytic
dispersion relation

(8)  B(w?) = Arc cos ( 3 Tr M (0?) )

In one dimension, 8, conveniently normalized, is also the integrated
density of states (IDS) /9/.

When Mp has real eigenvalues, the vhase is blocked (gap), the

Ljapounov exponent y is non zero, In the first case lTr'Mﬁ( < 2, in the
second | Tr Mp [ > 2 )

IIT - THE TRACE MAPPING THEOREM AND ITS APPLICATIONS

The fundamental réle of the trace of the mapping, which controls the
behaviour of the phase g, the gaps, the Ljapounov exvonent and the
escape properties /l1/, has prompted two of us to investicate more
generally the propertieg of the trace of such a matrix product'Mzn
for a class of substitutions ¢ ./10/

Theorem : Let ¢ be a substitution on a two letter alphabet (a,b).
Then there exists a polynomial map ¢ : R® > R® with integer coeffi-
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Fig. 1 : The intearated density of states f(w?) for a Morse elastic

chain of 2° = 512 masses m, and m, E 0.8
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Fig. 2 : Normalized rlgllode for x = 6.487 in a Morse elastic chain of
27 = 128 sites with p= = 0.5
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cients such that if A and B are 2 X 2 matrices and one considers the
matrix product Myn obtained by replacing a by A and b by B in o™ (a)
then : Tr M,y = lst component [¢n(TrA,TrB, TrAB,detA, detB)}

¢ can be explicitly constructed, See /i0/ for the proof,

For the Morse seguence, the trace mapping with tn = % Tr Mzn(wz) is
(%) ooy T4t tl o - 4té_l+ 1 n > 2

One sees that the use of the analytic dispersion relation (8) together
with the trace mapping {(9) constitutes a very powerful tool to descri-
be the band structure (stability, total measure of gaps, behaviour of
singularities...) of such chains / 7/. In particular it allows very
accurate numerical calculations. Note that the theorem yields, for the
Fibonacci secuence the trace mapping

(10) tn+1 = 2tn tn—l - tn—2

with the quantity

2 2
n-t Y tap T2t b s

- 2
(Lll) I I+ tn + t
independent of n, (10) and (1l) have previously been found by several
authors /1il, 12, 13/,

The IDS for a Morse elastic chain of 22 = 512 sites derived from (8)

is shown on Figure l. Observation of a succession of iterates indicates
that gaps increase in number but also stabilize. The existence of a

self similar structure /14/ is already obvious at this stage /7/.
IV - MODES

The modes of a Morse elastic chain of 2" sites are studies using the
symmetric tridiagonal dynamical matrix deduced from the 2" eguations

(8) with fixed end boundary conditions :

(12) u =90

o = Yanyp

n . 2 .
frequencies w, one numericallyv calculates the corres-

Having derived 2
ponding modes. Figure 2 shows an example of such a mode, localized /15
that has a non trivial decrease from the center peak. Analogous wave

functions have been described in certain quasiperiodic situations /16/,
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