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LOCAL ISOMORPHISM, LANDAU THEORY, AND MATCHING RULES IN QUASICRYSTALS 

D. LEVINE 

Department of Phys i c s ,  U n i v e r s i t y  of Pennsylvania, Phi lade lphia ,  
PA 19104, U . S . A .  

Résumé: On discute quelques differences entre les quasicristaux et  les cristaux ordi- 
naires. Les conséquences physiques d'isomorphism local et des règles d'accordement sont 
presentbes. 

A b s t r a c t :  Çeveral issues which occur in quasicrystals but which are absent in ordinary 
crystals are discusse?. The physics inrolved in the ideas of local isomorphism and matching 
rules is illuttrated. 

Standing as the5 do in such striking contrast to  the structures of classical crystallography, 
quasicrystals:], have generated a great deal of interest, both theoretically and experiment-ally. The 
exciting discovery of a rapidly rooled a l I o  of AlMn-2: exhibiting sharp diffraction peaks in a n  array 
with classical1~- forbidden icosahedral rotation syrbmetry has been confirmed by man7 successive 
experiments. Shoiiid this material turn out to be a quasicryst,al. as many believe, it would represent 
a new phase of marrer. 

While quasicrystals are similar to  cryst,als in some ways. they differ in man- important aspects. 
In this paper \ce shall discuss some of the features peculiar t o  quasicrystals which are imperative 
in their st.udy. We shall briefl. review the concepts of quasicryst.als in the Introduction using the 
Penrose tilings as a prototype. In section 2 we shall discuss local isomorphism, a concept which does 
not apply t o  ordinary cryst.als. Section 3 briefly reviews methods for constructing quasicrystals. 
emphasizing the various free parameters which control the specific details of the quasicrgst.als. 
In section 4. connections t o  Landau theory will be indicated. Section 5 discusses the role which 
mat.ching or Londing rules play in determining the nature of a quasicrystal structure. Here too we 
exhibit a set of matching rules which is consistent with the icosahedral quasicrystal derived from 
projection from a six-dimensional hypercubic lattice. In section 6 we argue that these issues are 
not only of mathematical interest. but are relevant to  physics as well. 

1 I n t r o d u c t i o n  

Ordinary crystals are constructed out of a single unit ceIl repeated in a periodic array. Qua- 
sicrystals are built out of a finite number (rwo or more) unit cells layed face-to-face (edge-to-edge 
in two dimensions): these are arranged quasrperzodtcally. (A function is quasiperiodic if it can 
be written as the sum of periodic functions. some of whose periods are incommensurate.) Qua- 
sicrysfals are characterized not only b? their quasiperiodic translational order. but by their bond- 
ortentattonal-order (BOO): al1 of the "bonds" connecting near neighbors are oriented along a set 
of star axes. That  the unit celIs are placed face-to-face implies that  quasicrystals are Delaunay 
systems: neighboring quasicrystal sites never get closer together than some finite minimal distance. 

The prototype quasicrystal is the Penrose tilings of the plane 3.4 which were constructed as 
examples of a non-periodic tiling. Figure 1 depicts a small portion of a Penrose tiling. AS may be 
seen. there are two unit cells. a fat and a skinnl- rhombus. which are the basic building blocks of the 
Penrose tilings. These unit cells arc laid edge-to-edge. and it may be verified by inspection that the 
vertices of the tiling never get cioser together than some minimum distance. The Penrose tilings 
have pentagonal fwe could equally well sa?- decagonal, 300: the edges of the tiles are aligned 
along the axes of a regular pentagon. 

Tha: the Penrose tilingc have qiiasiperiodic translational order is less obvious: this is revealed 
by a construction due to R. Amrnan~i. .kt the right of Figure 2 is depicted a decoration of each 
of tfie two rhombic unit cells of the Penrose tiiing. -4 certain set of line segments h a  been drawn 
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Figure 1: A portion of a Penrose tiling. 

on each of the  tiles. \Te demand that  when the tiles are laid. these segments do not terminate. 
but continue across the edges of the tiles. (This is one manifestation of the matching rules which 
serve to guarantee legitimate Penrose tilings.) The resultant set of lines is shown superimposed 
on a portion of a Penrose tiling in the upper part of Figure 2. These comprise a specific Fibonacct 
pentagrid. the set of intersections of which is known as the Ammann quasifattice of the Penrose 
tilings. The lines are divided into five families (fabeled by p = 1,. . . ,5) oriented along the axes of 
a regular pentagon, and the lines in each family are spaced according to the Fibonacci sequence. 

with special choices of the parameters ap and O p .  Here T = golden ratio = (1 - t'?i)12. and 
's represent the greatest integer function. The Fibonacci sequence is quasiperiodic. as has been 

&ccussed elsewhere 5 . I t  is because of this sequence that the pentagrid of Figure 2 is called a 
Fibonacci pentagrid. 

The Penrose tilings also have a self-similarity transformation. called defiation, in u-hich the 
tiles are dissected in a iveIl-defined fashion (illustrated in Figure 3) into smaller whole and l idlf  

tiles. In a legitimate Penrose tiling. the half tiles combine with other half tiles in such a wa) as 
produce another. scaled down Penrose tiling. The inberse operation is called tnfiation, it begir,. 
ui th  a Penrose tiling and generates another. larger scaie Penrose tiling. The Ammann quasilatr i c r  
itself has an inflation defiarion rule 6 . and this. in tandem ~ i t h  the decoration of Figure 3 inducc- 
the inflation deflation rule of the Penrose tilings shoan in Figure 3. 

Figure 2: .kt righ:. a decoratior: of the Penrose tilee. Yïhen the tiles are laid in a Iegal fashion. a 
Fibonacci pentagrid results: thi: is s h o ~ r i  at the top. 



Figure 3: The inflation 'deflation rules for the Penrose tiles. 

2 Local Isomorphism 

In ordinarp crystals there is only a single unit cell. and there is only a single a a y  to pack 
them consistent with the s i  mrnetr' of the crystal. With quasicrystals the situation is much more 
complicated. ouing t o  the larger number of unit cells. Using the same cells. many distinct packings 
may be constructed. 

The set of al1 quasicr~stal packings employing the same unit cells may be partitioned into 
equivalence c iases  knorin as local isomorphism (LI) classes. Within each LI class there is (gener- 
ail?) an infinite nurnber of à:stinct packings. Two quasicrystals belonging t o  different LI c!asiec 
are lorall: distinguishallr there exist motifs which appéar in one packings which do not apperir 
in the other. Three such non-locally isomorphic tilings are illustrated in Figure 4. 

TWO locally isomorphic quasicrystals however. are geometrically indzstiizguishable: any bounded 
region appearing in one appears in the other. and vice versa. To see this another uay. we ma! 
think of ocerla'ing :he two packings. Then via a finite (albeit perhaps large) relative transla~ion 
of the parkings. the? ma' be brought into coincidence over any arbitrar- preassigned boundeà 
regiori. Sote  that ever? finite region appearing in one quasicrystal packing appears in one locall! 
isomorphic t o  it with the same frequency. It should be emphasized that two locally isomorphic 
tilings are not idcntical-it is not possible to  bring them into yerfect coincidence oxer their entire. 
infinite extent. 

Note that the local isomorphism classes are indeed equi~alence classes. since local isomorphi~ni 
is a s?mnietric. reflexjxe. and tiansitiLe relation. Thus the LI classes are mutual11 exclusive. \ l e  
shall argue in section 5 that the notion of local isomorphism is physicall? relelant. and is not jus! 
a mathematical classification. 

Figure 4: Three tiling' Luilt out of the same unit cells. which belong ro different LI classes 
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3 Degrees  of F'reedom i n  t h e  C o n s t r u c t i o n  of Quas ic rys ta l s  

To  date, several methods for constructing quasicrystals have been proposed. One way, in 
analogy with the Penrose tilings, is to  attempt to  matching and inflationjdeflation rules with a 
given set of unit cells. In general this is very difficult, although we shall discuss one set of matching 
rules in Section 4. 

Another method which has been proposed has been called the projection technique.~7.8,9,10~. 
In this method, a hyperplane C (the "physical spacen), whose dimension is equal t o  that  of the 
desired quasicrystal, is constructed in a higher dimensional periodic lattice (generally taken to be 
hypercubic) and a certain subset of the lattice sites are projected orthogonally ont0 C ;  these are 
the vertices of the quasicryStal packing. One advantage of this method is the elegant way in which 
the Fourier transforms of the packings thus obtained may be computed. It has also been suggested 
that the projection rnethod can be used t o  produce quasicrystals with arbitrary symmetry.11. 

One may also employ a technique known as the multigrid or generalized dual method.i7,12.13) to  
produce quasicrystal packings. This method can be used to construct the largest set of quasicryst,al 
packings (al1 LI classes) for any given orientational symmetry. The one disadvantage is that there is 
no direct analytic method known for finding the diffraction pattern of a general packing constructed 
by this technique. -4lthough the details of the construction method are given e l se~here( i .13~ .  we 
will briefly recount the method. Given a n  X-grid composed of (N families of) periodically spaced 
straight lines (planes in 3D) in a grid-space,[141 a unique star vector, ei, is associated with each of 
the S grids. The "dual" transformation associates a vertex in the quasicrystal packing with each 
open region (a region bounded by grid Iines (planes) through which no other grid lines ( ~ l a n e s )  
pass) in the grid-space. It is important t o  not,e that this procedure is not simply t o  place a 
of the packing inside its associated region in the grid-space. The set of vertices is guaranteed ro 
form a full quasicrys:al packing of unit cells with orientational symmetry corresponding to the 
"star" vectors, e,, and neighboring vertices are separated by one of the star vect,ors. 

The  dual transformation also associates each point of intersection of grid lines (planes) in r h e  
grid space with a unit ceIl in the quasicrystal packing. The nature of this unil cell i î  determinrd 
by the number of grid lines (planes) which interSect a t  the point and their angles of intersec.tic)r.. 
In the event that only two lines intersect at a point in t,he grid space. the associated unit cell- 
are rhombuses (In three dimensions, if only three grid planes intersect at a point the unit cc,!: 
associated with the intersection point is a rhombohedron.). If more than two (t.hree) grid linc? 
(planes) intersect a t  a point in 2D (3D) then the unit cells associat.ed with such intersection poini- 
are more complicated. possessing more edges (faces) than does a rhombus (rhombohedron). 

In any sufficiently general construction method there are free parameters determining the pre- 
cise nature of the tilings produced. These may be divided into two classes: (a) those that shift 
packings within a given LI class: and (b) those that  change the LI class of the tilings generated. 
These free parameters may be related t o  physically meaningful properties with the aid of Landail 
theory. as we shall see. 

Lei ils examine a specific case. the construction of pentagonal tilings in 2D (employing t t i f  
previously discussed rhombic unit cells of the Penrose rilings) by direct projection from a f i \ *  - 
dimensional hypercubic lattice I. This construction has been described in detail in e1se\vherei9 : 1:) 
order ICI det.ermine which plane is the "physical" plane. we note that there is a natural action of r t i c  
pentaaonal group on .i which sinipl! permutes its axes. This operation entailî a five-dimensionai 
representation of the pentagonal group. Decomposing this representation into representation~ 
irreducible over the real numbers. we find that  there are two 2D irreducible representations. and the 
1D trivial represent,ation. T h r  irreducible subspaces of -k corresponding to these representation' 
are used in the pro.ject.ion. One of the 2D subspaces is the physical plane. T. the other is the 
"perpendicular space'. T'. Last. we have the trivial invariant subspace. the (1.1.1.1.1) direction. 

In order t o  get the vertices of the quasicrystal packing we now project a certain subset of the 
points of ~i orthogonall>~ ont0 T. The way in which this subset is chosen is described elsewhere.:Y.5 

Translating the physical space in its own plane does not have an effect on the resulting tiling: i t  
simply translates the entire pattern. This translational invariance corresponds t o  phonon degree~ 
of freedoni of the tiling. \I'hat is also true. although not obvious. is that translating S along an? 
vector in the plane of Y. while certainl>- changing the tiling. only produces locally isomorphic 
tilings. Such translations are analogous LO phason degrees of freedom present in incommensuratr 
syst.ems such as charge density waves'l5 (Although it should be noted that if pinning effect? 
occur. results of ordinary elasticity theor?- ma! no: app1'-.). However, if we translate S along the 
(1.1.1.1.1i direcrion. we produce tilinps whick are not locally isomorphic. 

One waj- icosahedral quasicrvsta! pa.ckirigs may br  produced is by projectioning from a 6D 
hypercubic Iattice t o  3D. I t  is important ro reaiizr that thls construction. in contras? t o  that of 
the pentagonal tiiirigs. can produce on]!- a single LI c!ass of packings. These packings will have as 



their unit cells two r h o m b o h e d r a ~ l 6 , l  , one prolate, the other oblate. We shall return t o  these unit A cells shortly t o  discuss a set of matc ing rules for them. 
To make contact with the Landau theory and broken symmetry modes t o  be discussed in the 

next section, let us turn t o  quasicrystals generated by the multigrid o r  generalized dual method. 
We may construct the quasicrystal packing dual to  any multigrid; in particular the Fibonacci 
pentagrids (hexagrids in 3D) may be used to obtain the pentagonal (icosahedral) packings. The 
free parameters ap and /3" in the Fibonacci sequence of Equation (1) control the specific nature of 
the packings dual to these penta- (hexa-) grids. In particular, if the parameters of two Fibonacci 
penta- (hexa-) grids 7 and 3' are related by 

for al1 i. where u and w are are independent arbitrary 3-vectors and the G, are the six icosahedral 
(five pentagonal) star vectors. then the packings dual to  3 and 7' are locally isomorphic. We shall 
use the "(:" brackets to represent an operation on an integer argument n. ranging from O to  5 (1 
t o  5 in SD) such that G(, = G(,,, modo) if n f 0, and G p  = -Go The vectors G, and GO: are 
related to the two different 3D representations of the icosahedral group (or the two different 2D 
real representations of the pentagonal group in the case of the 2D pentagonal tilings). 

4 Landau T h e o r p  

Thusfar in this paper. we hate  described quasicrystals in a language tailored t o  discussions of 
unit cell packings. One may also use this language to describe crystals as packings of a single 
unit cell. There is an alternative description which is often used t o  describe crystals. the so- 
called Landau theory.  which is especially useful for discussing stability 17.18 and defects. 19 This 
description is in fact applicable to  an\ translationally ordered phase. and we shall discuss it here 
for the case of quasicrystals. focusing in particular on the examples of pentagonal and icosahedral 
quasicrystals. It should not be thought that the ideas discussed in this chapter constitute a different 
theory of icosahedral phases: the two descriptions. via unit cell packings and via Landau theor!. 
are complementary approaches. 

The density p(rf of any translationally ordered phase P. such as  a quasicrystal, may be ex- 
panded in a Fourier series 

~ ( r )  = C P G ~ ' ~ ~ .  ( 4 )  
G E  T 

where R is the reciprocal lattice assocjated with P. The set of G is not linarly independent over 
the integers: so there exists a minimal basis set {G,) out of which ali of the reciprocal lattice 
vect,ors can be consrructed. In ordinary crystals. there are d vectors in such a basis (where d ii. 
the dimension of the crystal). whereas for quasicrystals and incommensurat,e crystals there are 
q d .  where nl is the number of incornmensurate lengths. Each p~ is a complex number with 
an amplitude p~ and a phase QG. The phase P is characterized by non~anishing p c  . Phasc 
transitions to  and from P ma' be described by a phenomenological Landau free erlergy density f.' 
that can be expanded in a power series in p(r): the ni"erm of which contains terms of the form 

TO obtain the free energy . we must integrat,e over r. and terms such as these vanish identically 
unless I:=, Gk = O. When this condition on the sum of the phases is satisfied. the corresponding 
term in the free energy is 

r, 

P G ,  PG? ' - .  , P G ,   COS(^ Q G * )  ( 6 )  
k = l  

Minimization of the free energy leads t o  a minimum energp state with constraints among the 
QG's. These constraints leave unspecified nid phases <P, !$hich are the hydrodynamic variables of 
the theory. To understand the hydrod>namic modes of the structure. it is sufficient t o  consider a 
dens i t~  

nrd 

~ ( r )  = X PG,.  elP etG,, r (7)  
u=l  
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Figure 5: -4 densit! \vaLre image obtained by summing five pentagonally oriented density aares. 
Regions where pfr) i 0 are indicated in black; regions where pfr)  5 O are white. 

Let us now focus on the pentagonal quasicrystal composed out of densit- waves a t  the five 
fundamental reciprocal lattice vectors G,. pointing along the axes of a regular pentagon. -4lthough. 
strictly speaking. only four basis vectors are necessary to characterize pentagonal quasicrystals. 
it is convenient t o  consider this redundant set of five (this is analogous to  the case of the 2D 
triangular lattice where a redundant set of three vectors is used). Such a density is depicted in 
Figure 5. Where p(r)  is greater than zero. a black dot is placed: white regions indicate that p j r )  
is less than or equal to zero. In the minimum energy state. the phases associated with these five 
basis vectors satisf! x,, a,, = 7 = constunt. We may parametrize these five phases <P, as 

where G:,  means Gzn.,,dj. The vecr.or u may be identified with translations of the structure. 
as with ordinary crystals. 20- The vector W. however. does not occur in ordinary crystals: it 
corresponds to  relative shifts of the densit.y waves. By analogy t o  the crystalline case, we shall 
refer t o  u as the phonon variable. and by analog? t o  incommensurate crystals, where this extra 
mode occurs. the vector w shall be called the phason variable. It should be noted that if pinning 
occurs. this may make this mode hehave differently from what would be predicred by the usual 
elasticit>- theory. If we Yary the constant 7 .  however. this will generally change the LI class of 
the structure: i t  corresponds 10 translating the h?-perplane E in the (1,I.l.l.l) direction as wa- 
discussed in Section 3. 

Note the similarity of Equation (8) t o  the changes in the parameters a and 3 of Equatiom (21 
Sand (3) .  which are the mosi general shifts of these parameters which preserve local isomorphiirii 
class. 21: By this analogy. we see that an intimate connection exists between the unit cell parkirig 
picture and the densi t~-  wate description detailed here. Thus. we see that changing the constanr 
7 of t,he phases corresponds to  changing the local isomorphism class of the structure (pro\.ided 
that 7 itself is not of the form G, . u r G(,$ . w) .  Such changes cosr energy so effect; this may 
be seen as follows: the quintic term in the Landau expansion for the free energy is of the form 
c o s ( x ;  @,j = cos (>) .  I f ?  changes then this term does also. and so the free energy changes. Thus. 
we m a i  sa? that non-locally isomorphic quasicrystals have dafferent free energies. 

Note that  for icosahedral quasicrystals there are six basis vectors. compared with five for the 
pent.agona1 case. and that  these six are linearly independent over the integers. The effect of this 
linear independence is that for the icosahedral case modelled with these six fundamental density 
waves. there is no analog of 3 (Not,e that  we can obtain different LI classes if we include other 
density waves in our expansion.). There still are. of course. phonon and phason modes defined in 
exactly the same fashion as for the pentagonal case. 

The  rwo rhombic unit cells out of which the Penrose tilings are ronstructed rna-. in the absence 
of stipulations to  the contrary. be paclied cr~stallographically. In order to guarantee that the 
Penrose t i l i n ~ j  are non-periodic. a set of matching or bonding rules. restricting the ways in which 



Figure 6: Rhombohedral unit cells. in an unfolded v i e ~  shoa ing  al1 of the faces. The faces have 
been decorated with solid and hollow circles. The matching rule is that the faces of adjacent 
rhombohedra ha\e different types of circles. and that the circles overlay one another. 

tiles may be laid one next to the other. are imposedI3; (One such manifestation, the demand for 
continuity of the -4mmann line segments. was described in Section 1.). Indeed, matching rules may 
be thought of as choosing a specific LI class of packings from amongst ail possible arrangements 
using the same unit cells. 

In a physical system for which a quasicrystal unit ce11 packing serves as  an underlying lattice. 
atoms will be  placed in the unit cells, like cells containing the same atomic decoration. If t h i ~  
is the case. then we may imagine that the atomic interactions induces a matching rule: it ma\ 
be energetiically preferable for two unit cells to  attach in some fashions but unfavorable to  joir, 
in others. It should be noted that  we do not claim that  a physical system must grow in strici 
observance of these '.rulesn (in contrast t o  the case of the Penrose tilings where the matching 

41 zern rules must be obeyed absolutely). In this sense the rules merely serve as a guide for the -:s 
t o  indicate hou7 to achieve energetically favorable configurations. When the unit cells are packed 
together to  form an extended structure. we may expect that  uhere there are "violations" of the 
bonding rules the atoms will relax so as t o  minimize the energy of the local cluster. 

Matching rules also serve another important purpose. the identification of defects. We ma\ 
readil) identif! the niisrnatches \\ hich occur in the growth of a structure (for example in a cornputer 
simulation) and assign energy costs to their formation. It is then of interest to  see hou. quickly arid 
in what fashion thesr defects anneal out iinder structural relaxation. ive are currently involved iri 

just such studie?. \i hich ma' bear on the growth and subsequent relaxation of icosahedral material- 
In Figure 6 \ve have depicted one sel of matching rules disco\ered b> us and independentl) b! 

R .  -4mmann 22 \$hich cmploys the rhornbohedral unit cells mentioned in Section 3. The figiirc 
shows the rhombohedra in an "unfolded view". al1 of the faces are visible. If the rhombohedrd 
were cut out of the paper along the solid lines. scored and folded along the dashed Iines, then the 
edges would match up and could be taped to form the rhombohedral solids. 

On the faces of the rhomhohedra are drawn circles. some 5olid and some hollon. The matching 
rule is that the solid circle on one face of a given unit ceIl must niatch against a hoilou- circle on 
a face of a neighboring unit cell. One realization of this rulc could be effected with the help of 
magnas.  where the north pole of one magnet would be attracted b! the south pole another. 

Xote that  although only two shapes of unit cells are usea. the prolate and the oblate rhom- 
bohedra. the rnatching rules distinguish between four cells. two of each shape. This is indicated 
in the figure b) the labels FI. F2. Si.  and 4. standing for "fat- (prolate) and "skinnyn (oblate). 
respectively. 

This set of matching rules is consistent with the LI class of quasicrystal packings obtained. for 
example. by using the projection technique beginning with a six dimensional hypercubic lattice. 
Tha t  is, g i ~ e n  such a packing. we may consistently paint the solid and hollow circles in such a 
that  the matching rules are  satisfied everywhere. It is OUT conjecture. although as yet unproven. 
that  these matching ruies force the packings to  be in this LI class. l t  should be  noted that inflation 
rules for this set of unit cells are rery involved. 

There is another set of unit cellc. consisting of four zonohedrz: a rhombic triacontahedron. 
a rhombic icosahedron. a rhombic dodecahedron. and the p r o l a t ~  rhombohedron (each of which 
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may be dissected into the above rhombohedral shapes), which has simple matching and infla- 
tionldeflation rules.!23! These quasicrystal packings are very much analogous t o  the Penrose tilings 
of the plane and so are said to  belong to the Penrose LI class. 

6 P h y s i c a l  Significance of  Local  I s o m o r p h i s m  

In general, as we have stated earlier, even for fixed orientational symmetry, quasiperiodicity, 
and unit cell shapes, there are infinitely many distinct LI classes (corresponding, for example, to  
shifts in the (a,, f i , )  which are not of the form shown in Eqs. (2) and (3)). No such issue arises 
for the case of periodic crystals where there is a unique configuration of cells - a single LI class 
containing one element. Since locally isomorphic quasicrystals are geometrically indistinguishable. 
we ma) expect them to be physically indistinguishable as well. Indeed, 

Two quasicrystals have identical diffraction patterns (the same spot locations and intensities) 
if and only if they are locally isomorphic.[5] 

Quasicrystals in the same LI class have the same free energy (computed, say via Landau 
theory). By the same token, two quasicrystals in different LI classes have different free 
energies. unless there is some accidental degeneracy. 

Given this conjecture. if the ground state  of a some physical system is a quasicrystal state. 
as determined by minimizing the Landau mean free energy. then it is degenerate and corre- 
sponds to  a set of configurations in a szngle LI class (neglecting the possibility of accidental 
degeneracy). For example. configurations corresponding t o  the quasicrystal packings that 
obey the matching rules described in Section 5 have a different energy than configurations 
that  don't obey the matching rules since, as a e  noted. they necessarily belong to different 
LI classes. 

The entropy of the ground state is determined bq the number of energetically equivalenr 
configurations. -4ccording to the arguments above. only configurations in the same LI claoi 
should be counted. Counting al1 possible rearrangements of the unit cellc consistent with the 
quasiperiodicity and s'mmetry leads to a vast overestimate of the entrop-. 

In this paper we have sketched some of the details invol~ed in the stud: of quasicrystals which 
do not arise for crystals. Ar samples improve in quality. these issues may take on greater relevance 
to  experimental systems. In an? e ~ e n t .  the- illustrate some of the richness inherent in quasicrystals. 

It is a pleasure t o  thank Paul Steinhardt. Joshua Socolar. Tom Lutensli!. Sriram Ramasvam?. 
Stellan Ostlund. and John Toner with whom much of the nork described here was performed. 

References 

1 D. Levine and P. J. Steinhardt Phys. Ret .  Lett 53.  2477 (1984). 

2' D. S. Shechtman. 1. Blech. D. Gratias. and J .  W. Cahn. Phys. Rer. Lett. 53.  1951 (1984). 

i3 M.  Gardner. Sei. Am. 236, 110 (January. 1977). 

4 R. Penrose Bull. Inst. Math. and Its App! .  10. 266 (1974). 

, 5  D. Levine and P. J .  Steinhardt. to  appear in Phys. Rer. B (1986). 

26 .4s cited in B. Grunbaum and G. C. Shepard. Ti l ings and P a t t e r n s  (Freeman. San 
Francisco) t o  be published. 

' 7  K. de Bruijn. Sed.  Akad. Weten. Proc. Ser. A43 39.53 (1961). 

8 \-. Elser. Acta Crysz. A42. 36 (1986): Phys. Re?.. B32. 4892 (1965). 



[9] M. Duneau and A. Katz, Phys. Reu. Lett. bf 34: 2688 (1985); J. Phys. Paris Collog. CS, 
31 (1985). 

110; P. -4. Kalugin, A. Kitaev, L. Levitov, JETP  41. 119 (1985); J. Phys. Paris 46, L601 
(1985). 

:il! V. Elser, private communication. 

12j P. Kramer and R. Yeri Acta Cryst. 1140, 580 (1984). 

il31 J .  E. S. Socolar, P. J .  Steinhardt, and D. Levine, Phys. Rev. B32, 5547 (1985). 

1141 Kote that we need not restrict ourselves t o  periodic sets of straight lines, but we shall for 
the sake o f  simplicity. Additionally. the languagc we are using is strictly applicable to  2D; 
in higher dimensions a e  would have grids composed out of hyperplanes. 

13, For a review. see P. Rak. Rep. Prog. Phys. 45 ,  587 (1981). V. L. Pokrovsky and A. L. 
Talapov. T h e o r y  of I n c o r n m e n s u r a t e  Crys ta l s ,  Sok-iet Science Reviews (Switzerland: 
Haraood -4cadernic Pub.) 1985. 

16 These unit ceIl shapes were originally suggested bu R. Ammann; for a discussion see A. 
Mackay. SOL'. Phys. Cryst. 26 517 (1982): Physica 114.4. 609 (1982). 

:17' P. Bak Phys. Rec. Lett. 54: 1517 (1985): Phys. Rea. B32. 5764 (1983). See also the 
earlier aork  by S. Alexander and -1. %fcTague, Phys. Rec. Lett. 41: 702 (1978). 

18: 3. D. 14ermin and S. M. Troian. Phys. Rec. Lett 54 3524 (1985): M. Y. Jaric. Phys. Rets. 
Lett. 55. 607 (1985): 0 .  Biharn. D. Mukamel. and S. Shtrikman. submitted to  Phys. Ret.. 
(1986): also see articles in this ~ o l u m e .  

19 D. Levine. S. C. Lubensky. S. Ostlund. S. Ramaswamy. P. 3. Steinhardt and J. Toner. 
Phys. Rec. Leti. 54. 1520 (1955): T. C .  Lubensk!. S. Ramaswam-. and J .  Toner, Phys. 
Reu. R32. 7444 (198.5). 

20. For ordinar) crystals. the phases are simply parametrized by @, = G ,  . u - const. 

21. It should be noted that Equations (2) and (3) as written pertains to  the icosahedral qiia- 
sicrystal. \\hile Equation (8) is uritten for the pentagonal case. For the icosahedral case. 
the phases may he parametrized by @, = G ,  . u  - G, ,  . W .  with n going from O to  5. aiid 
: being defined as in Equations (2) and (3). 

22: R .  .-lmmann. private conin~unication~ (1986). 

23 J .  E. S.  Socolar and P. J .  Steinhardt. to appear in Physzcal Reciew B (1956). 

- 

COMMENTS AFTER D. LEVINE TALK : 

N. RIVIER.- Continuous transformations (tunneling modes) between two 
different, non locally isomorphic configurations are physically 
observable in glasses l .  

The structure of a covalent glass can be modelled by a continuous 
random network (CRN = regular graph), made of 4-bonded tetrapods, with 
slight, random bending of the bonds. There appeas rings with odd 
number of bonds, threaded through by uninterrupted lines 
("disclinations" characterized by oddness). 
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Configurations are described by transporting the tetrapod about a ring 
(Burgers). They are labelled by classes of the permutation group SA 

(permutations of the feet of the tetrapod) : even permutations for 
even rings, odd permutations for odd rings. There are 2 odd classes of 
S ,,, hence two configurations per odd line, which are not locally 

Tunneling between these two configurations does occur, and has been 
observed experimentally, most directly by (acoustic) echo techniques1. 

1. C.F. W.A. PHILLIPS, Amorphous Solids, Springer 1981 
2. N. RIVIER and H. GILCHRIST, J. Non-Cryst. Solids 75 (1985), 259, 

and to be published. 

M.V. JARIC.-  

1 do not quite see how quenched phasons could explain distortions of 
the diffraction patterns observed experimentally. 1 would expect that 
any quenched phason displacements would be essentially random and zero 
in average. Obviously, such "self-averaging" would lead to no 
distortions and only to an effective thermal broadening in the form of 
l/q tails superimposed on the Bragg peaks. Also, since it is known 
that icosahedral quasicrystals also grow into icosahedral grains 1 
cannot easily see what could produce the "orienting" of the quenched 
phason displacements which is necessary to obtain symmetry distortions 
of the diffraction patterns. 


