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LOCAL ISOMORPHISM, LANDAU THEORY, AND MATCHING RULES IN QUASICRYSTALS

D. LEVINE

Department of Physics, University of Pennsylvania, Philadelphia,
PA 19104, U.S.A.

Résumé: On discute quelques differences entre les quasicristaux et les cristaux ordi-
naires. Les conséquences physiques d’isomorphism local et des régles d’accordement sont
presentées.

Abstract: Several issues which occur in quasicrvstals but which are absent in ordinary
crystals are discussed. The physics involved in the ideas of local isomorphism and matching
rules is illustrated.

Standing as they do in such striking contrast to the structures of classical crystallography,
quasicry stals']; have generated a great deal of interest, both theoretically and experimentally. The
exciting discovery of a rapidly cooled alloy of AIMn 2! exhlbltlnv sharp diffraction peaks in an array
with classically forbidden icosahedral rotation symmetry has been confirmed by many successive
experiments. Should this material turn out to be a quasicrystal. as many believe, it would represent
a new phase of mazrter.

While quasicrystals are similar to crystals in some ways. they differ in many important aspects.
In this paper we shall discuss some of the features peculiar to quasicrystals which are imperative
in their study. We shall briefly review the concepts of quasicrystals in the Introduction using the
Penrose tilings as a prototype. In section 2 we shall discuss local isomorphism, a concept which does
not apply to ordinary crystals. Section 3 briefly reviews methods for constructing quasicrystals.
emphasizing the various free parameters which control the specific details of the quasicrystals.
In section 4, connections to Landau theory will be indicated. Section 5 discusses the role which
matching or bonding rules play in determining the nature of a quasicrystal structure. Here too we
exhibit a set of matching rules which is consistent with the icosahedral quasicrystal derived from
projection from a six-dimensional hypercubic lattice. In section 6 we argue that these issues are
not only of mathematical interest, but are relevant to physics as well.

1 Introduction

Ordinary crystals are constructed out of a single unit cel] repeated in a periodic array. Qua-
sicrystals are built out of a finite number (two or more) unit cells layed face-to-face (edge-to-edge
in two dimensions): these are arranged guasiperiodically. (A function is quasiperiodic if it can
be written as the sum of periodic functions. some of whose periods are incommensurate.) Qua-
sicrystals are characterized not only by their quasxpenodlc translational order. but by their bond-
orienfational-order (BOO): all of the “bonds™ connecting near neighbors are oriented along a set
of star axes. That the unit cells are placed face-to-face implies that quasicrystals are Delaunay
systems: neighboring quasicrystal sites never get closer together than some finite minimal distance.

The prototype quasicrystal is the Penrose tilings of the plane 3.4: which were constructed as
examples of a non-periodic tiling. Figure 1 depicts a small portion of a Penrose tiling. As may be
seen. there are two unit cells. a fat and a skinny rhombus. which are the basic building blocks of the
Penrose tilings. These unit cells are laid edge-to-edge, and it may be verified by inspection that the
vertices of the tiling never get cioser together than some minimum distance. The Penrose tilings
have pentagonal (we could equaliyx well say decagonal} BOO: the edges of the tiles are aligned
along the axes of a regular pentagon.

Tna' the Penrose tilings have quasiperiodic translational order is Jess obvious; this is revealed
by a construction due 1o R. Ammann. At the right of Figure 2 is depicted a decoration of each
of the two rhombic unit cells of the Penrose tiling. A certain set of line segments has been drawn

Article published online by EDP_Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986312



http://www.edpsciences.org
http://dx.doi.org/10.1051/jphyscol:1986312

C3-126 JOURNAL DE PHYSIQUE

gRZe
SSCSRSOZ IS
NSNS Nt s
NS NN NN 7
IS
OSNEINT

iaa Vs s bma aa
LR LR
YERNTAR
SOX N KA NI
BT

Figure 1: A portion of a Penrose tiling.

on each of the tiles. We demand that when the tiles are laid. these segments do not terminate,
but continue across the edges of the tiles. (This is one manifestation of the matching rules which
serve to guarantee Jegitimate Penrose tilings.) The resultant set of lines’is shown superimposed
on a portion of a Penrose tiling in the upper part of Figure 2. These comprise a specific Fibonacct
pentagrid, the set of intersections of which is known as the Ammann guasilattice of the Penrose
tilings. The lines-are divided into five families (labeled by u = 1,...,5} oriented along the axes of
a regular pentagon, and the lines in each family are spaced according to the Fibonacci sequence.

Clfn
r,‘j:n-.ha“—‘r; ;—:3“ 3

with special choices of the parameters a* and 8*. Here 7 = golden ratio = (1 -~ /3)/2. and
..'s represent the greatest integer function. The Fibonacci sequence is quasiperiodic. as has been
discussed elsewhere'3 . It is because of this sequence that the pentagrid of Figure 2 is called a

Fibonacci pentagrid.

The Penrose tilings also have a self-similarity transformation, called deflation, in which the
tiles are dissected in a well-defined fashion (illustrated in Figure 3) into smalleér whole and half
tiles. In a legitimate Penrose tiling, the half tiles combine with other half tiles in such a way as to
produce another, scaled down Penrose tiling. The inverse operation is called inflation, it begin~
with a Penrose tiling and generates another. larger scale Penrose tiling. The Ammann quasilattice
itself has an inflation deflation rule 6 , and this. in tandem with the decoration of Figure 2 induces

the inflation. deflation rule of the Penrose tilings shown in Figure 3.
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Figure 2: At righi. a decoration of the Penrose tiles. When the tiles are laid in a legal fashion. 2

Fibonacci pentagrid resulis: this i shown at the top.
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Figure 3: The inflation /deflation rules for the Penrose tiles.

2 Local Isomorphism

In ordinary -crystals there is only a single unit cell. and there is only a single way to pack
them consistent with the symmetry of the crystal. With quasicrystals the situation is much more
complicated. owing to the larger number of unit cells. Using the same cells. many distinct packings
may be constructed.

The set of all quasicrystal packings employing the same unit cells may be partitioned into
-equivalence ciasses known as local jsomorphism (LI classes. Within each LI class there is {gener-
ally)} an infinite number of distinct- packings. Two quasicrystals belonging to different LI classes
are locally distinguishable: there exist motifs which appéar in one packings which do not appear
in the other. Three such non-locally isomorphic tilings are illustrated in Figure 4.

Two locally isomorphic quasicrystals however, are geometriecally indistinguishable: any bounded
region appearing in one appears in the other, and vice versa. To.see this another way, we may
think of overlaying the two packings. Then via a finite (albeit perhaps large) relative translation
of the packings. they may be brought into coincidence over any arbitrary preassigned bounded
region. Note that every finite region appearing in one quasicrystal packing appears in one locally
isomorphic to it with the same frequency. It should be emphasized that two locally isomorphic
tilings are not identical-it is not possible to bring them into perfect coincidence over their entire.
infinite extent.

Note that the local isomorphism classes are indeed equivalence classes. since local isomorphism
is @ symmetric. reflexive. and transitive relation. Thus the LI classes are mutually exclusive. We
shall argue in section 5 that the notion of local isomorphism is physically relevant. and is not just
a mathematical classification.

Figure 4: Three tilings built out of the same unit cells. which belong to different L1 classes
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3 Degrees of Freedom in the Construction of Quasicrystals

To date, several methods for constructing quasicrystals have been proposed. One way, in
analogy with the Penrose tilings, is to attempt to matching ‘and inflation/deflation rules with a
given set of unit cells. In general this is very difficult, although we shall discuss one set of matching
rules in Section 4. .

Another method which has been proposed has been called the projection technique.7,8,9,10l.
In this method, a hyperplane T (the “physical space”), whose dimension is equal to that of the
desired quasicrystal, is constructed in a higher dimensional periodic lattice (generally taken to be
hypercubic) and a certain subset of the lattice sites are projected orthogonally onto ¥; these are
the vertices of the quasicrystal packing. One advantage of this method is the elegant way in which
the Fourier transforms of the packings thus obtained may be computed. It has also been suggested
that the projection method can be used to produce quasicrystals with arbitrary symumetry. 11

One may also employ a technique known as the multigrid or generalized dual method.i7, 12, 13_ 10
produce quasicrystal packings. This method can be used to construct the largest set of quasicrystal
packings (all LI classes) for any given orientational symmetry. The one disadvantage is that there is
no direct analytic method known for finding the diffraction pattern of a general packing constructed
by this technique. Although the details of the construction method are given elsewhere!7.13], we
will briefly recount the method. Given an N-grid composed of (N families of) periodically spaced
straight lines (planes in 3D) in a grid-space,{14; a unique star vector, e;, is associated with each of
the N grlds The “dual” transformation associates a vertex in the quasxcrvsta] packing with each
open region {a region bounded by grid lines (planes) through which no other grid lines {planes)
pass) in the grid-space. It is important to note that this procedure is not simply to place a vertex
of the packing inside its associated region in the grid-space. The set of vertices is guaranteed to
form a full quasicrystal packing of unit cells with orientational symmetry corresponding to the
“star™ vectors, e;, and neighboring vertices are separated by one of the star vectors.

The dual transformation also associates each point of intersection of grid lines (planes) in the
grid space with a unit cell in the quasicrystal packing. The nature of this unit cell is determined
by the number of grid lines (planes) which intersect at the point-and their angles of intersectior.
In the event that only two lines intersect at a point in the grid space. the associated unit cell-
are thombuses (In three dimensions, if only three grid planes intersect at a point the unit cell
associated with the intersection point is a rhombohedron.). If more than two (three) grid lines
(planes) intersect at a point in 2D (3D) then the unit cells associated with such intersection point~
are more complicated, possessing more edges (faces) than does a thombus (rhombohedron).

In any sufficiently general construction method there are free parameters determining the pre-
cise nature of the tilings produced. These may be divided into two classes: (a) those that shift
packings within a given LI class, and (b) those that change the LI class of the tilings generated.
These free parameters may be related to physically meaningful properties with the aid of Landau
theory. as we shall see.

Let us examine a specific case. the construction of pentagonal tilings in 2D (employing the
previously discussed rhombic unit cells of the Penrose tilings) by direct projection from a five-
dimensional hypercubic lattice A. This construction has been described in detail in-elsewhere:9.. In
order 10 determine which plane is the “physical” plane, we note that there is a natural action of the
pentagonal group on A which simply permutes its axes. This operation entails a five-dimensional
representation of the pentagonal group. Decomposing this representation into representations
irreducible over the real numbers. we find that there are two 2D irreducible representations. and the
1D trivial representation. The irreducible subspaces of A corresponding to these representations
are used in the projection. Ome of the 2D subspaces is the physical plane. X. the other is the
“perpendicular space™, T'. Last. we have the trivial invariant subspace. the (1.1.1.1.1) direction.

In order to get the vertices of the quasicrystal packing we now project a certain subset of the
points of A orthogonally onto T. The way in which this subset is chosen is described elsewhere. 9.%

Translating the physical space in its own plane does not have an effect on the resulting tiling: it
simply translates the entire pattern. This translational invariance corresponds to phonon degrees
of freedom of the tiling. What is also true. although not obvious. is that translating £ along any
vector in the plane of T'. while certainly changing the tiling. only produces locally isomorphic
tilings. Such translations are analogous 1o phason degrees of freedom present in incommensurate
systems such as charge density - wavesi15 (Although it should be noted that if pinning effects
occur, results of ordinary elasticity theory may not apply.). However, if we translate T along the
(1.1.1.1.1} direction. we produce tilings whick are not locally isomorphic.

One way jcosahedral quasicrvsta! packings may be produced is by projectioning from a 6D
hypercubic lattice to 3D. It is important to realize that this construction. in contrast to that of
the pentagonal tilings, can produce only a single LI class of packings. These packings will have as
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their unit cells two rhombohedraj16,1), one prolate, the other oblate. We shall return to these unit
cells shortly to discuss a set of matching rules for them. _

To make contact with the Landau theory and broken symmetry modes to be discussed in the
next section, let us turn to quasicrystals generated by the multigrid or generalized dual method.
We may construct the quasicrystal packing dual to any multigrid; in particular the Fibonacci
pentagrids (hexagrids in 3D) may be used to obtain the pentagonal (icosahedral) packings. The
free parameters o and 3* in the Fibonacci sequence of Equation (1) control the specific nature of
the packings dual to these penta--(hexa-) grids. In particular, if the parameters of two Fibonacci
penta- (hexa-) grids 7 and 7' are related by

b=t +u -G, (2)

B =8+ WGy @)

for all 7, where u and w are are independent arbitrary 3-vectors and the G; are the six icosahedral
(five pentagonal) star vectors, then the packings dual to ¥ and 7' are locally isomorphic. We shall
use the “{}” brackets to represent an operation on an integer argument n, ranging from 0 to 5 (1
to 5 in 2D) such that G, = G35 moas) if » # 0, and G = —Gy. The vectors G; and Gy are
related to the two different 3D representations of the icosahedral group (or the two different 2D
real representations of the pentagonal group in the case of the 2D pentagonal tilings}.

4 Landau Theory

Thusfar in this paper, we have described quasicrystals in a language tailored to discussions of
unit cell packings. One may also use this language to describe crystals as packings of a single
unit cell. There is an alternative description which is often used to describe crystals, the so-
called Landau theory. which is especially useful for discussing stabilityi17.18: and defects. 19 This
description is in fact applicable o anv translationally ordered phase. and we shall discuss it here
for the case of quasicrystals. focusing in particular on the examples of pentagonal and icosahedral
quasicrystals. It should not be thought that the ideas discussed in this chapter constitute a different
theory of icosahedral phases: the two descriptions, via unit cell packings and via Landau theory.
are complementary- approaches.

The density p(r) of any translationally ordered phase P. such as a quasicrystal, may be ex-
panded in a Fourier series

p(r) = Y pge®r. (4)

Gek
where K is the reciprocal lattice associated with P. The set of G is not linarly independent over
the integers, so there exists a minimal basis set {G,} out of which all of the reciprocal lattice
vectors can be constructed. In ordinary crystals. there are d vectors in such a basis (where d is
the dimension of the crystal}. whereas for quasicrystals and incommensuraté crystals there are
‘nyd. where n; is the number of incommensurate lengths. Each pg is a complex number with
an amplitude pe: and a phase ®g. The phase P is characterized by nonvanishing pg . Phase
transitions to and from P may be described by a phenomenological Landau free energy density F
that can be expanded in a power series in p(r), the n** term of which contains terms of the form
e18G6,72G, 772G, ) HGI=Ga -G _ (3)

PG PG, " PG,

To obtain the free energy , we must integrate over r. and terms such as these vanish identically
unless 7., G, = 0. When this condition on the sum of the phases is satisfied. the corresponding
term in the free energy is

<3

£G, PG, - ipG, cos(>_ @g,) (6)

k=]
Minimization of the free energy leads to a minimum energy state with constraints among the
®;’s. These constraints leave unspecified n;d phases &, which are the hvdrodynamic variables of
the theory. To understand the hydrodynamic modes of the siructure, it is sufficient to consider a
density

p(r) = 3 g, et e (7)
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Figure 5: A density wave image obtained by summing five pentagonally oriented density waves.
Regions where p(r} > 0 are indicated in black; regions where p(r) < 0 are white.

Let us now focus on the pentagonal quasicrystal composed out of density waves at the five
fundamental reciprocal lattice vectors G,,. pointing along the axes of a regular pentagon. Although.
strictly speaking. only four basis vectors are necessary to characterize pentagonal quasicrystals.
it is convenient to consider this redundant set of five (this is analogous to the case of the 2D
triangular lattice where a redundant set of three vectors is used). Such a density is .depicted in
Figure 5. Where p(r) is greater than zero, a black dot is placed: white regions indicate that p{r)
is less than or equal to zero. In the minimum energy state. the phases associated with these five
basis vectors satisfv ¥ @, = v'= constant. We may parametrize these five phases &, as

®, =G, - u-G, W~~~ 5. (®)

where G, means Ga,moas. The vector u may be identified with translations of the structure.
as with ordinary crystals..20° The vector w, however. does not occur. in ordinary crystals: it
corresponds to relative shifis of the density waves. By analogy to the crystalline case, we shall
refer to u as the phonon variable. and by analogy to incommensurate crystals, where this extra
mode occurs. the vector w shall be called the phason variable. It should be noted that if pinning
occurs. this may make this mode behave differently from what would be predicted by the usual
elasticity theory. If we vary the constant 5. however. this will generally change the LI class of
the structure: it corresponds to translating the hyperplane T in the (1,1.1,1.1) direction as wa-
discussed in Section 3.

Note the similarity of Equation {8) to the changes in the parameters a and 3 of Equations (2}
and (3). which are the most general shifts of these parameters which preserve local isomorphism
class.'21” By this analogy. we see that an intimate connection exists between the unit cell packing
picture and the density wave description detailed here. Thus. we see that changing the constant
~ of the phases corresponds to changing the local isomorphism class of the structure {provided
that 4 itself is not of the form Gy - u ~ Gyu - W). Such changes cost energy to effect; this may
be seen as follows: the quintic term in the Landau expansion for the free energy is of the form
cos(3; P} = cos(7). If 4 changes then this term does also. and so the {ree energy changes. Thus.
we may sayv that non-locally isomorphic quasicrystals have different free energies.

Note that for icosahedral quasicrystals there are six basis vectors. compared with five for the
pentagonal case. and that these six are linearly independent over the integers. The effect of this
inear independence is that for the icosahedral case modelled with these six fundamental density
waves. there is no analog of 4 (Note that we can obtain different LI classes if we inciude other
density waves in our expansion.). There still are. of course. phonon and phason modes defined in
exactly the same fashion as for the pentagonal case.

5 Matching Rules

The two rhombic unit cells out of which the Penrose tilings are constructed may. in the absence
of stipulations 1o the contrary. be packed crystallographically. In order to guarantee that the
Penrose tilings are non-periodic. a set of matching or bonding rules. restricting the ways in which
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Figure 6: Rhombohedral unit cells, in an unfolded view showing all of the faces. The faces have
been decorated with solid and hollow circles. The matching rule is that the faces of adjacent
rhombohedra have different types of circles, and that the circles overlay one another.

tiles may be laid one next to the other, are imposed 3; (One such manifestation, the demand for
continuity of the Ammann line segments, was described in Section 1.). Indeed, matching rules may
be thought of as choosing a specific LI class of packings from amongst all possible arrangements
using the same unit cells.

In a physical system for which a quasicrystal unit cell packing serves as an underlying lattice.
atoms will be placed in the unit cells, like cells containing the same atomic decoration. If this
is the case, then we may imagine that the atomic interactions induces a matching rule: it may
be energetiically preferable for two unit cells to attach in some fashions but unfavorable to joir
in others. It should be noted that we do nét claim that a physical system must grow in strict
observance of these “rules” (in contrast to the case of the Penrose tilings where the matching
rules must be obeyed absolutely). In this sense the rules merely serve as a guide for the systermn
to indicate how to achieve energetically favorable configurations. When the unit cells are packed
together to form an extended structure, we may expect that where there are “violations™ of the
bonding rules the atoms will relax so as to minimize the energy of the local cluster.

Matching rules also serve another important purpose. the identification of defects. We may
readily identify the misrnatches which occur in the growth of a structure (for example in a computer
simulation) and assign energy costs to their formation. It is then of interest to see how quickly and
in what fashion these defects anneal out under structural relaxation. We are currently involved in
just such studies. which may bear on the growth and subsequént relaxation of icosahedral materials.

In Figure 6 we have depicted one set of matching rules discovered by us and independently by
R. Ammann 22 which employs the rhombohedral unit cells mentioned in Section 3. The figure
shows the rhombohedra in an “unfolded view”. all of the faces are visible. If the rhombohedra
were cut out of the paper along the solid lines. scored and folded along the dashed lines, then the
edges would match up and could be taped to form the rhombohedral solids.

On the faces of the rhombohedra are drawn circles, some solid and some hollow. The matching
rule is that the solid circle on one face of a given unit cell must match against a hollow circle on
a face of a neighboring unit cell. One realization of this rule could be eflected with the help of
magnéts, where the north pole of one magnet would be attracted by the south pole another.

Note that although only two shapes of unit cells are used. the prolate and the oblate rhom-
bohedra, the matching rules distinguish betweén four cells, two of each shape. This is indicated
in the figure by the labels Fy, F», S;. and S.. standing for “fat™ (prolate) and “skinny” (oblate).
respectively. .

This set of matching rules is consistent with the LI class of quasicrystal packings obtained. for
example. by using the projection technique beginning with a six dimensional hypercubic lattice.
That is, given such a packing, we may consistently paint the solid and hollow circles in such a way
that the matching rules are satisfied evervwhere. 1t is our conjecture. although as vet unproven.
that these matching rules force the packings to be in this LI class. 1t should be noted that inflation
rules for this set of unit cells are very involved.

There is another set of unit cells. consisting of four zonohedra: a rhombic triacontahedron.
a rhombic icosahedron. a rhombic dodecahedron. and the prolate rhombohedron {each of which
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may be dissected into the above rhombohedral shapes), which has simple matching and infla-
tion/deflation rules.|23! These quasicrystal packings are very much analogous to the Penrose tilings
of the plane and so are said to belong to the Penrose LI class.

6 Physical Significance of Local Isomorphism

In general, as we have stated earlier, even for fixed orientational symmetry, quasiperiodicity,
and unit cell shapes, there are infinitely many distinct LI classes (corresponding, for example, to
shifts in the (a:, 8;) which are not of the form shown in Egs. (2) and (3)). No such issue arises
for the case of periodic crystals where there is a unique configuration of cells — a single LI class
containing one element. Since locally isomorphic quasicrystals are geometrically indistinguishable,
we may expect them to be physically indistinguishable as well. Indeed,

e Two quasicrystals have identical diffraction patterns (the same spot locations and intensities)
if and only if they are locally isomorphic.|5]

e Quasicrystals in the same LI class have the same free energy (computed, say via Landau
theory). By the same token, two quasicrystals in different L1 classes have different free
energies, unless there is some accidental degeneracy.

e Given this conjecture, if the ground state of a some physical system is a quasicrystal state,
as determined by minimizing the Landau mean free energy, then it is degenerate and corre-
sponds to a set of configurations in a single LI class (neglecting the possibility of accidental
degeneracy). For example, configurations corresponding to the gquasicrystal packings that
obey the matching rules described in Section 5 have a different energy than configurations
that don’t obey the matching rules since, as we noted. they necessarily belong to different
L1 classes.

e The entropy of the ground state is determined by the number of energetically equivalent
configurations. According to the arguments above, only configurations in the same LI class
should be counted. Counting all possible rearrangements of the unit cells consistent with the
quasiperiodicity and symmetry leads to a vast overestimate of the entropy.

In this paper we have sketched some of the details involved in the study of quasicrystals which
do not arise for crystals. As samples improve in quality. these issues may take on greater relevance
to experimental systems. In any event, they illustrate some of the richness inherent in quasicrystals.
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the phases may be parametrized by @, = Gp ' u -~ G, - w. with n going from 0 to 5. and

being defined as in Equations {2) and (3).

'22° R. Ammann. private communication, (1986).

23 J. E. 8. Socolar and P. J. Steinhardt. to appear in Physical Review B (19%6).

COMMENTS AFTER D. LEVINE TALK :

N. RIVIER.- Continuous transformations (tunneling modes) between two
different, non 1locally isomorphic configurations are physically
observable in glasses !.

The structure of a covalent glass can be modelled by a continuous
random network (CRN = regular graph), made of 4-bonded tetrapods, with
slight, random bending of the bonds. There appear rings with odd
number of bonds, threaded through by uninterrupted lines
("disclinations" characterized by oddness).
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Configurations are described by transporting the tetrapod about a ring
(Burgers). They are labelled by classes of the permutation group S,
(permutations of the feet of +the tetrapod) : even permutations for
even rings, odd permutations for odd rings. There are 2 odd classes of
S ,, hence two configurations per odd line, which are not locally

isomorphic?.

Tunneling between these two configurations does occur, and has been
observed experimentally, most directly by (acoustic) echo techniques!.

1. C.F. W.A. PHILLIPS, Amorphous Solids, Springer 1981
2. N. RIVIER and H. GILCHRIST, J. Non-Cryst. Solids 75 (1985), 259,
and to be published.

M.V. JARIC.-

Comments :

I do not gquite see how guenched phasons could explain distortions of
the diffraction patterns observed experimentally. I would expect that
any quenched phason displacements would be essentially random and zero
in average. Obviously, such "self-averaging"” would 1lead to no
distortions and only to an effective thermal broadening in the form of
1/q 2 tails superimposed on the Bragg peaks. Also, since it is known
that icosahedral quasicrystals also grow into icosahedral grains I
cannot easily see what could produce the "orienting" of the quenched
phason displacements which is necessary to obtain symmetry distortions
of the diffraction patterns.



