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FINITE AUTOMATA AND ZERO TEMPERATURE QUASICRYSTAL ISING CHAIN 

J.P. ALLOUCHE and M. MENDES-FRANCE 

U . A .  226, U.E.R. de Mathematique et d'Infomatique, 351, COUr.5 
de la Liberation, F-33405 Talence Cedex, France 

Un automate fini est une machine qui engendre des suites 
dbterministes (p6riodiques ou non pbriodiques). Nous 6tudi- 
ons de telles suites et nous considhrons des chafnes d'Ising 
dont la suite des coefficients de couplage est "quasicrys- 
talline", c'est-L-dire engendrke par automate fini. 

Abstract 

A finite automaton is a machine which generates determi- 
nistic sequences (periodic or nonperiodic). We discuss such 
sequences and study Ising chains where the coupling coeffi- 
cients form a "quasicrystalline" sequence (i.e. generated bg 
automaton). 

This report is a somewhat extended version of our article 111 
even though we shall skip all proofs. 

I. Two questions : 

We start out with two seemingly unrelated problems. We shall 
see that their solution involves automata theory. 

Problem 1 Are the binary digits of \12 randomly distributed ? 
(6 = 1.01101010 ... ) 

Our second problem is longer to state. Let us first describe 
paperfolding 161. Fold a sheet of paper in two and iterate the pro- 
cedure to infinity (assuming the sheet of paper is infinitely wide). 

Now unfold the sheet and observe the infinite sequence of creases 
V and A left by the folds. The sequence starts as follows : 
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V V A V V A A V V V A A V A A  ... 
Now replace V by 1 and A  by 0 to obtain the binary expansion of the 
paperf olding number 

Problem 2 Is the paperfolding number algebraic ? 

(An algebraic number x is a root of a polynomial equation 

where a, # 0 and where all coefficients are integers. A number which 
is not algebraic is called transcendental. Such are n, e, log 2 , . . .  
It is because n is transcendental that one cannot square the circle.) 

11. Automatic sequences : 

We first define what an automaton is. An automaton is composed 
of a finite number of states A,B,C, ... . In our example below we 
have five states. One of these states, say A, is singled out and is 
called the initial state. From every state two arrows leave which we 
name 0 and 1. These arrows link each state to some other state. Loops 
are permitted. 

Each state is now coloured by a finite number of symbols. Here we 
choose to colour the states with a and b : 

The automaton works as follows. The inputs are nonnegative integers. 
For example consider "nineteen" which in basis 2 is represented by 
10011. Reading from left to right we follow the instructions 1,0,0,1,1 
which take us from the initial state A through B,D,D,B to the final 
state C. The output function (colour of C) gives us b. Thus the spe- 
cific automaton we have drawn maps "nineteen" on b. In the same way 
every integer n is mapped onto one of the symbols a or b, say a,. The 



infinite sequence ao, al, az, ... is said to be generated by the au- 
tomaton. Here we obtain : 

n I O  1 2  3 4 5 6 7 8 9 10 11 12 13 14 15 16... 
- - -+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
a , l a a a b a a b b a a  a b b a b b a*.. 

Exercise : Show that the above sequence is the paperfolding sequence 
provided the first term a0 = a is deleted (a=V,  b=A). 

Given an infinite sequence on a finite alphabet a,b,c, . . . 
one may ask whether there exists an automaton which generates it. If 
so, the sequence is said to be "automatic". Needless to say most 
sequences are not automatic (the set of automatic sequences is coun- 
table, whereas the set of all sequences on two symbols has power of 
the continuum). 

It can be shown that finite deletion does not destroy automa- 
ticity. Ultimately periodic sequences are automatic. Aperiodic auto- 
matic sequences do exist (for instance the paperfolding sequence). 

The complexity of a sequence may be measured through Fourier 
techniques. Given a complex-valued sequence (a,), define the correla- 
tion : 

N - 
X(k) = lim ( X a, an+k ) / N . 

N+m n=l 

It is well known that x is the Fourier transform of a measure M 
called the spectral power measure (or power spectrum) associated to 
the sequence (a,) : 

X(k) = exp (2inkx) M(dx) . I: 
If the sequence (a,) is ultimately periodic, M consists of a finite 
sum of Dirac measures (with rational support). In the case of the 
paperfolding sequence, M is an infinite sum of Dirac measures 
(concentrated on dyadic rationals). The paperfolding sequence is thus 
almost-periodic (in the sense of J.P. Bertrandias). Actually, if one 
computes the Fourier-Bohr coefficients of the paperfolding sequence 
defined on the alphabet '1, 

N 
B(x) = lim ( Z a, exp (-2innx) ) / N , 

N-w n=l 

then one will notice that, in this specific case, 
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which proves that the sequence (a,) is almost-periodic in the more 
restrictive sense of Besicovitch. 

Two other examples of automatic sequences are the Thue-Morse 
sequence and the Rudin-Shapiro sequence. 
The Thue-Morse sequence is generated by the automaton shown below : 

the spectral measure M of this sequence is known to be continuous 
and singular (M(dx) cannot be written as m(x)dx). 
The Rudin-Shapiro sequence is generated by the automaton : 

The spectral measure is the Lebesgue measure M(dx)=dx. A * l  random 
sequence would have the same spectral measure. So, in some sense, 
the Rudin-Shapiro sequence is more complex than the Thue-Morse se- 
quence which itself is more complicated then the paperfolding se- 
quence ... 

Even though automatic sequences can behave in a rather appa- 
rently complicated fashion, their entropy is 0 ,  (the entropy H of a 
sequence (a,) is linked to the number p(k)of words of length k 
which occur in (a,). Specifically : H g lim (log p(k))/k ). 

k+al 

Hence an automatic sequence stands in between the order of a crystal 
(periodic sequences) and random sequences, close however to the 
crystal order. We propose to rename automatic sequences quasicrys- 
talline. 



1 1 1 .  Relationship with number theorg : 

Loxton and van der Poorten have proved that if the digits of 
a real irrational number form an automatic sequence, then the number 
is transcendental. This has two stricking consequences : 

Consequence 1 The digits of \j 2 are "random" in that they are not 
generated by a finite automaton. 

Consesuence 2 The paperfolding number is transcendental. 

IV. Substitutions : 

A substitution i s  a rule which assigns a word to each letter 
of a given alphabet.. For example : 

Such a substitution generates an infinite sequence. Starting with A 
and iterating the substitution we obtain : 

A 
AB 
ABDC 
ABDCDBEC 
ABDCDBECDBDCEBEC 

We now colour the letters A,B,C,D,E with a and b : 

The infinite sequence then becomes 

aaabaabbaaabbabb.. . 
Ignoring the first term, we recognize once again the paperfolding 
sequence. This should not be a surprise since a general theorem 
states that automatic sequences can be generated by substitution 
and projection, and conversely C41, C51. 

Remark 1 Several authors reminded us that the Penrose tiling can 
be constructed through a certain substitution procedure where each 
letter is to be replaced by words which do not have the same length. 
See for example 133, C81, C101. Such sequences are not automatic in 
our sense. 
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Remark 2 In describing automatic sequences, we considered automata 
where the inputs were read from left to right. Actually every auto- 
matic sequence can be generated by an automaton where the input is 
read from right to left 1 4 1 , t 5 1 .  Prove that the paperfolding sequence 
is generated by the right-left automaton : 

Remark 3 The notion of automata can be generalized to any basis q 
greater than or equal to 2 : q arrows leave from each state and the 
input is expressed in the basis q. 

V. The uuasicrystal Ising chain : 

The cyclic Ising chain is defined through the Hamiltonian : 

where uq = t l  represents the spin at site q, UN = UO, where J > 0 
is the coupling constant, H the external field and where bq = t l  
is a given sequence. If the sequence (E,,) is automatic, we shall say 
that the Ising chain is quasicrystalline. 
Solving the model at temperature T means computing the partition 
function 

(the sunnnation is over all choices for u = (up) and B is the Boltz- 
mann constant) and the thermodynamic limit 

lim (Log Zw(T))/N 
N+m 

In this paper we shall limit ourselves to calculating the induced 
magnetic field at T = 0. 
It is well known that ZN(T) is the trace of the matrix product : 



where 

with z = exp(gJ), a = H/J . 
Let 7,; denote the partition function of the Ising chain where the 
spin at site n i s  fixed to be t1, Z, is defined in a similar way. 
Then : 

2: and 2, are both generalized polynomials in z .  As T vanishes, 
z increases to infinity, so that 

where a,, b,, p,, q, depend only on n. 

The difference d, = a, - b, plays the r81e of the induced magne- 
tic field of the chain at site n, see C71 for instance. It is easiIy 
seen that d, is defined recursively : 

where sgn( ) is the sign function. 

In a recent article 113 we prove that if we are given two 
maps, say ft and f- which both map a finite set S into itself, 
then the sequence 
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n + f  f ... f f 
E (n) E (n-1) 

(a) , a E S 
( 1 )  f<O) 

is automatic provided the sequence (E,) is itself automatic. 
Choosing 

we then obtain the following theorem : 

Theorem Consider an infinite puasicr~stal Ising chain in a uni- 
form external field. The magnetic field d, induced on the 
nth site at T = 0  is auasicr~stalline. 

We conclude the paragraph with an explicit example. Suppose 
H = J ,  and suppose that (6,) is the Thue-Morse sequence on the 
symbols + and - : 

generated by the automaton described at the end of 5 2 ,  where a is re- 
placed by + and b by - . 
Then the sequence (dk) = (d,+z) is generated by the automaton 

A - r O ,  B + 2 ,  C + 4 ,  D + 2 ,  E + 4 ,  

and begins as follows 



We have chosen to describe the sequence (d,+z) because, as it 
happens, this sequence is independent of the initial values of do 
(do = 0,2,4).  It goes without saying that a sequence is automatic 
if and only if the shifted sequence is automatic. 

Remark 1 It is easy to compute the free energy Y per spin. 
Indeed : 

Y = lim (log ZN(T))/ON 
N-m 

Now ZN(T) is a polynomial in z = exp(eJ) 

Let z go to infinity, then 

CN 
- Y = lim (log z )/eN , 

N-ua 
0-m 

where 

hence 

Now 

- Y/J = lim C N / ~  = 1 im aN/N . 
N-m N-tm 

aqt1 - aq = a + max ( E ~ , - ~ ~ - E ~ )  

We assume as in our example a = 1 and do = 2. 
Then 

hence 

N N 
lim ~ N / N  = lim C 1 + (X d,)/2N - ( E min(2,dq))/2N I 
N-rw N-m 1 1 

N 
= 1 + lim CEl(dq - min(2,dq))l/2N 

N-MD 
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= 1 + lim (Card C q < N ; dq = 4 ))/N 
Nu0 

where freq(4) is the frequency of 4's in the sequence (d,) . 
Using PeyriBreas techniques described in 1101, we easily conclude 
that freq(4) = 1/3. 
Thus 

Remark 2 We have not yet made a systematic study of the Fou- 
rier properties of the general sequence (d,)  in terms of the se- 
quence ( 6 , ) .  We can however show that (d,) may have a purely 
continuous power spectrum M(dx) even though (E,) is almost- 
periodic. This would be the case for example in the zero external 
field H=O when (6,) is defined by 

Then : 
N-1 

e ( x )  = lim C Z cn exp(-2innx) I / N 
N-w n = O  

1/3 if x=O, 

(4/3)((-1)Y/2Y)e~p(2in(2k+1)/2Y) ifx=(2k+1)/2', 

0 in all other cases. 

One then verifies that 

which proves that (6,) is indeed almost-periodic : 

Now the induced magnetic field (d,) is 



n- i 
d,= a s q  , provided d o = l .  

4 ' 0  

It is then easily proved that d, = (-1)" m, , 
where (m,) is the Thue-Morse sequence, and that (dn) has conti- 
nuous (singular) power spectrum. 

Remark 3 In an article in preparation C21 we show that solving 
the quasicrystal Ising chain at temperature T (not necessarily 0) 
leads to the study of a polynomial iteration problem. 
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