Influence of processing parameters on the electrical properties of Zn$_{1-x}$Co$_x$O ceramics (0 ≤ x ≤ 0.10)

B. Tanouti, Roger Salmon, Jean-Pierre Bonnet

To cite this version:

B. Tanouti, Roger Salmon, Jean-Pierre Bonnet. Influence of processing parameters on the electrical properties of Zn$_{1-x}$Co$_x$O ceramics (0 ≤ x ≤ 0.10). Journal de Physique Colloques, 1986, 47 (C1), pp.C1-861-C1-864. 10.1051/jphyscol:19861132. jpa-00225530

HAL Id: jpa-00225530
https://hal.science/jpa-00225530

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
INFLUENCE OF PROCESSING PARAMETERS ON THE ELECTRICAL PROPERTIES OF Zn$_{1-x}$Co$_x$O CERAMICS (0 \leq x \leq 0.10)

B. TANOUTI, R. SALMON and J.-P. BONNET

Laboratoire de Chimie du Solide du C.N.R.S., 351, Cours de la Libération, F-33405 Talence Cedex, France

Abstract - The electrical conductivity of Zn$_{1-x}$Co$_x$O solid solution has been studied as a function of composition (0 \leq x \leq 0.10) and of sintering time. The behavior observed is probably due to the appearance of two energy levels in the forbidden band.

I - INTRODUCTION

Zinc oxide is a n-type semiconductor with a large energy gap (\approx 3.2 eV). This is generally attributed to the presence of an excess of metal in the wurtzite structure /1/. The electrical properties are thus controlled by the departure from stoichiometry which depends itself of the elaboration process /2/. They may also be influenced by the dissolution of small amounts of transition metals able to create energy levels in the forbidden band /3/. Such effects are particularly important in the case of cobalt-doped zinc oxide, which is the major phase in varistor materials /4/. In order to understand the influence of their processing parameters on the final properties, we have undertaken the study of the electrical conductivity of Zn$_{1-x}$Co$_x$O ceramics as a function of sintering time and of composition (0 \leq x \leq 0.10).

II - EXPERIMENTAL

Ceramics samples were prepared from mixtures of reagent-grade ZnO and cobaltous carbonate. The powders were suspended in ethanol and stirred for 4 h. in an agate jar mill. After drying, they were ground and bound with polyvinyl alcohol, then pressed under 200 MPa. The pellets obtained were set in an alumina boat and fired at 1300°C in pure oxygen for the times selected. In all cases the heating and cooling rates were 600°C h$^{-1}$.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19861132
The ceramic microstructures were examined on polished samples by scanning electron microscopy. X-ray dispersive energy analysis does not show the existence of cobalt oxide precipitates.

The electrical conductivity was measured in the 1300-400 K range in air using the four-probe method /5/. For electrical contacts, platinum wires and paint were used. For each temperature the equilibrium value reported is the ordinate of the horizontal asymptote to the log $\sigma = f(\text{time})$ curve.

III - RESULTS

1 - Influence of the sintering time on the electrical properties of Zn$_{0.99}$Co$_{0.01}$ solid solution.

This study was performed on ceramics having the same composition, but sintered at 1300°C for various times from 3 up to 63 hours.

Figure 1a) illustrates the temperature dependence of the electrical conductivity σ of the samples studied. All the curves $\log \sigma = f(10^3T^{-1})$ show two linear parts separated by a transition temperature T_L determined with an accuracy of 30 K. To each linear part can be associated an activation energy E

![Fig.1 - Temperature dependence of the electrical conductivity of Zn$_{1-x}$Co$_x$ ceramics sintered at 1300°C in air.](image)

- a) influence of the sintering time (composition of sample: Zn$_{0.99}$Co$_{0.01}$)
- b) influence of the composition (sintering time: 24 h.)
calculated from the expression $\sigma = \sigma_0 \exp(-E/kT)$. The activation energy values, calculated at low and high temperature - E_{lt} and E_{ht} respectively - are listed in Table I.

<table>
<thead>
<tr>
<th>Sintering time (h)</th>
<th>$T_{tr} + 30$ K</th>
<th>E_{lt} (eV)</th>
<th>E_{ht} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>805</td>
<td>0.22</td>
<td>0.50</td>
</tr>
<tr>
<td>6</td>
<td>805</td>
<td>0.18</td>
<td>0.43</td>
</tr>
<tr>
<td>13</td>
<td>860</td>
<td>0.20</td>
<td>0.34</td>
</tr>
<tr>
<td>22</td>
<td>925</td>
<td>0.21</td>
<td>0.26</td>
</tr>
<tr>
<td>63</td>
<td>780</td>
<td>0.20</td>
<td>0.31</td>
</tr>
</tbody>
</table>

From these results it appears that the electrical conductivity and the transition temperature both increase with the sintering time. The opposite behavior is observed for the high temperature activation energy E_{ht} whereas the low temperature activation energy E_{lt} seems to be insensitive to the sintering time. The peculiar case of the sample sintered for 63 h will be justified later (see Discussion).

2 - Influence of the cobalt concentration on the electrical conductivity of the $\text{Zn}_{1-x}\text{Co}_x\text{O}$ solid solution ($0 < x < 0.10$).

The study was performed on samples of various cobalt content ($0 < x < 0.10$) all sintered in the same conditions (24 h. at 1300°C in a stream of pure oxygen). The temperature dependence of the electrical conductivity of the samples studied is represented on Figure 1b. As in the previous study it appears that all the curves $\log \sigma = f(10^3T^{-1})$ consist of two linear parts, separated by a transition temperature T_{tr}. The values of T_{tr} and of the activation energies E_{ht} and E_{lt} are listed for every composition in Table II.

<table>
<thead>
<tr>
<th>Cobalt concentration x</th>
<th>$T_{tr} + 30$ K</th>
<th>E_{lt} (eV)</th>
<th>E_{ht} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>625</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>0.010</td>
<td>900</td>
<td>0.21</td>
<td>0.26</td>
</tr>
<tr>
<td>0.020</td>
<td>890</td>
<td>0.22</td>
<td>0.31</td>
</tr>
<tr>
<td>0.025</td>
<td>780</td>
<td>0.24</td>
<td>0.47</td>
</tr>
<tr>
<td>0.030</td>
<td>680</td>
<td>0.23</td>
<td>0.64</td>
</tr>
<tr>
<td>0.040</td>
<td>680</td>
<td>0.40</td>
<td>0.74</td>
</tr>
<tr>
<td>0.100</td>
<td>680</td>
<td>0.62</td>
<td>0.78</td>
</tr>
</tbody>
</table>

IV - DISCUSSION

For all the samples studied, the electrical conductivity was
independent on the applied voltage which indicates that no effective potential barrier is localized at the grain boundaries in the 1300 - 400 K temperature range.

Comparing Figure 1a) and 1b) shows that the electrical conductivity can be lowered by either increasing the cobalt content of the solution or decreasing the sintering time. This can mean that the diffusion of cobalt ions in the matrix is a rather slow process. Then, for short sintering times, the distribution of cobalt is not even, its concentration being the highest in the outer core of the zinc oxide grains. Indeed, if such a similar configuration exists in a sample sintered for a long time -due to the evaporation of zinc oxide from the outer core of the grains for instance- then it would explain the lowering of the electrical conductivity observed for the sample sintered for 63 h.

At low temperature and for \(x \leq 0.04 \) the activation energy \(E_{a} \) does not depend on the cobalt concentration and is close to that of pure ZnO. The low temperature conductivity must then be controlled mainly by the oxide own donor states which lie 0.3 eV below the conduction band /6/. The decrease in the conductivity observed when \(x \) is increased could then be the result of a lowered carriers mobility (Fig. 1b).

On the opposite, the high temperature activation energy \(E_{ht} \), observed when \(x > 0.10 \), and consequently the Fermi level, depends on the cobalt concentration. The lowering of the transition temperature \(T_{tr} \) when \(x \) increases (Table II) could be due to a decrease in the ZnO level concentrations, and to a contribution of deeper levels created by the introduction of \(\text{Co}^{2+} \) ions in the wurtzite structure which would lie 1.6 eV below the conduction band (7).

The increase of the electrical conductivity observed when \(x = 0.005 \) is associated with a sharp increase in density /7/.

The dissolution could then involve the formation of interstitial zinc and of donor levels according to:

\[
\text{CoO} + \text{Zn}^{x}_{\text{Zn}} + \text{Co}^{x}_{\text{Zn}} + \text{Zn}^{2+} + 2e^- + \frac{1}{2} O_2
\]

As the concentration of cobalt is increased, the evolution of the density suggests that a substitutional mechanism would take over the previous one, i.e.:

\[
(1-x) \text{ZnO} + x \text{CoO} \rightarrow (1-x)\text{Zn}^{x}_{\text{Zn}} + x\text{Co}^{x}_{\text{Zn}} + O^x
\]

which would involve the existence of deep energy levels.

REFERENCES

/5/ Laplume, J., L'Onde Électrique, 335 (1955) 113.