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ELASTIC CONSTANTS AND INTERNAL FRICTION OF REINFORCED COMPOSITES

H.M. LEDBETTER

Fracture and Deformation Division, Center for Materials
Science , National Bureau of Standards, Boulder, Colorado
80303, U.S.A.

Abstract —~ We describe experimental studies on the anisotropic elastic con-
stants and internal friction of reinforced composites. Reinforcement types
include fiber and fabric., Studied materials include boron-aluminum, glass-
epoxy, boron-epoxy, graphite—epoxy, and aramid-epoxy. We made most measure-
ments with a Marx three-component oscillator at kilohertz frequencies. In
all cases, elastic-constant direction dependence fit relationships derived
for homogeneous monocrystals. Usually, elastic stiffness and internal fric-
tion show an inverse relationship. 1In no case did the inclusion-matrix in-
terface appear to contribute significantly to internal friction.

I - INTRODUCTION

A physical property of a composite material depends mainly on three ingredients:
matrix property, inclusion property, and phase geometry. Phase geometry includes
many variables: volume fraction, inclusion shape, inclusion orientation, inclusion
size, and inclusion distribution., For some composites, especially at higher tempera-
tures, the inclusion-matrix interface affects a physical property.

The present study considers two strongly related physical properties: elastic con-
stants and internal friction. Especially, we focus on Young modulus, E, and inter-
nal friction, Q ', determined in rod-shaped specimens in a Young-modulus
(extensional-wave) mode.

Elastic constants enter many aspects of composite-material behavior: stiffness-
weight ratio, load-deflection, elastic instability, thermoelastic stress, residual
stress, sound-wave velocities, material characterization, relationship to other
physical properties (for example, thermal expansivity and specific heat), plastic
deformation, theoretical strength, and nondestructive evaluation.
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Internal friction of composites relates to many of the above phenomena. In
addition, it relates especially to structural damping and to detection of premoni-
tory failure as manifested in cracking and delamination.

II - EXPERIMENT

We measured Young modulus and Young-modulus-mode internal friction using a Marx
three—-component oscillator in the kilohertz-frequency region /1/. In this method,
the Young-modulus value arises from the specimen resonance frequency and the
internal friction from the half-power width of the resonance peak. Typical speci-
mens were cylindrical rods 5 mm in diameter and 2 to 10 cm long.

IIT - RESULTS

Table 1 gives ambient-temperature results for several fiber-reinforced and cloth-
reinforced composites. Figure 1 shows a log—-log plot of most of these results.
Figure 2 shows the angular variation of E and Q ' for a uniaxialboron-fiber-
reinforced aluminum-matrix composite. For the warp-fill plane, Fig. 3 shows a
similar diagram for a glass-fiber-cloth-reinforced epoxy-matrix composite. Figure 4
shows a similar diagram for the Young modulus of a graphite-fiber-cloth-reinforced
epoxy-matrix composite.

IV - DISCUSSION

Figure 1 shows an approximately hyperbolic relationship between Young modulus and
internal friction. If we assume a relationship

E? Q"' = ¢ = constant (1)

then with E in units of 10'! N/m? and @' in units of 10'", a least-squares. fit
gives n = 0.80 and C = 14,3. Although this preliminary empircal E-Q ' relationship
requires further study, it suggests a useful guideline for understanding and
optimizing these two physical properties in fiber-reinforced composites.

For a transverse-isotropic-symmetry material, with the unique axis along x3, the
Young modulus is

BTl =855 = 855 70+ 5001 - ¥ 4 (2815 + 5y)v2(1-vD) (2)

. where Si. denote the Voigt elastic compliances, Y denotes the angle between the
unique akis and the specimen axis, and the prime denotes rotation away from the x
axis., Composites containing parallel fibers distributed either randomly or triangu-
larly in the transverse plane should exhibit transverse-isotropic symmetry.

Figure 2 shows that measurements on a boron-aluminum composite fit the predictions
of Eq. (2). Also, Fig. 2 shows an inverse relationship between the directional
variations of E and Q“1: the minimum in E corresponds to the maximum in Q" ', and
vice versa. This extends the general result shown in Fig. 1 for principal direc-
tions. Presently, we do not understand the irregular Q"' (Y) behavior. We specu-
late that this may arise from mode coupling related to the composite's laminated
structure.

For an orthotropic-symmetry material, with principal axes along X1, X, x3, the
Young modulus (in the Xq-%, plane, for example) is
~1

ey 3 y 2 2
E70 = Syq = a11Sqq * 3128 * afja7a{28yp + Sgg) BREY

where the a;; represent the direction cosines between the specimen axis and the
principal axes. Laminated cloth-reinforced composites with 90° angles between warp-
direction and fill-direction fibers should exhibit orthotropic macroscopic symmetry.
For glass-epoxy, Fig. 3 confirms that the measurements fit Eq. (3). This figure
also shows Q , which, like the boron-aluminum case, relates inversely to E.

Figure 3 shows results for a graphite-cloth-reinforced epoxy—-matrix case. The Young
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modulus behaves similarly to the glass-epoxy case shown in Fig. 3. Our preliminary
measurements show that Q ' for graphite-cloth-epoxy does not vary as expected with
angle.

V — CONCLUSIONS

From this study, there arise several conclusions:

1. Composites reinforced with unidirectional fibers exhibit transverse-isotropic

© symmetry. Composites reinforced with cloth laminae exhibit orthotropic symmetry.
One can describe both cases using standard relationships derived for anisotropic
monocrystals.

2. Usually, but not always, Q"1 decreases when E increases. This inverse relation-
ship tends to hold for three situations: a single composite where inclusion
volume fraction changes, among various composites, and within a single composite
versus direction.

3. At ambient temperatures, in all composites studied to date (including others not
reported here), we found no interface contribution to internal friction.,
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TABLE 1. Young modulus and internal friction of several fibrous composites at ambient
temperature.
Fiber Internal First-harmonic
orientation, Dynamic Young's fsictiog, frequency,
No. Material degrees modulus, GPa Q! 107 KHz
1 Boron- o] 226.2 + 0.2 5.6 £ 0.4 50
2 aluminum 90 139.2 + 0.2 17.0 + 0.5 80
3 Boron-epoxy 0 226, 4 17.6 + 1.4 55
4 90 22.7 + 0.2 400.8 + 20.6 35
5 0, + 45, 0 121.4 + 0.8 79.9 =+ 3.3 70
Glass-epoxy 0 4%.3 - 30
6 Glass-cloth-
epoxy 1 woof 30.6 £ 0.6 62.1 = 8.2 40
7 Glass-cloth-
epoxy 2 woof 29.6 + 0.2 64.9 + 7.5 40
Glass-cloth—
epoxy 3 woof 44.3 + 0.5 S.4 + 0.3 30
8 Glass-cloth- warp 29.4 ¢ 1.0 68.7 + 6.6 4070
9 epoxy 4 fill 26.3 + 1.0 100.1 £ 7.8 45-90
10 normal 14,02 228.6 55
1 Glass-cloth- warp 31.4 £ 0.4 114.5 + 13.9 40-70
12 epoxy 5 fill - 27.7 221.6 + 85.3 40-70
13 normal 15.6 £ 0.6 406.5 60
Graphite- 0 133.5 11.1 90
epoxy 1 920 10.0 164.2 45
+ 45 -
14 Graphite- 0 300.5 + 0.4 17.9 + 0.4 65
15 epoxy 2 90 7.3 £ 0.5 258.8 + 0.5 45
16 0, + 45, 90 120.0 + 4.0 44.2 + k.0 50
17 Graphite- [¢] 177. 2 4 15.0 + 3.8 50
18 epoxy 3 90 8.5 218.0 = 1.7 30
19 0, + 45, 90 70. =1 49.8 £+ 2.1 40
20 Graphite- 0 130.4 1 2.8 + 0.4 60
epoxy 4
21 Graphite- 0 130. =+ 1 —-— 60
epoxy 5
Graphite-cloth  warp 73.7 274 50
epoxy £ill 64,7 320 50
normal 13.0 1584 50
Graphite- 0 133.5 114 90
epoxy 1 90 10.0 164, 45
22 Aramid- 0 66.1 £ 0.5 114.8 & 6.1 60
epoxy

3Uncertainties do not occur for some cases because only one specimen

was measured.
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Fig. 1 - Young modulus versus internal friction for fiber-reinforced composite
materials in Table 1.
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Fig. 2 - Directional variation of Young modulus and internal friction for a
uniaxial-boron-fiber aluminum-matrix composite. Fibers lie along X3 axis. The
curve represents Eq. (2).
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Fig. 3 - Directional variation of Young modulus and internal friction for a glass—

fiber-cloth epoxy-matrix laminated composite. Fibers lie in warp and fill
directions. The curve represents Eq. (3).
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Fig. U - Directional variation of Young modulus for a graphite-fiber-cloth epoxy-
matrix laminated composite. Fibers lie in warp and fill directions. The curve
represents Eq. (3).



