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Résumé - Le modèle d'espace courbe permet une description systématique de 
l'ordre dans les structures amorphes. Nous présentons ici un calcul analytique 
des fonctions d'interférence des modelés parfaits. 

Abstract - The curved space model provides a new systematic approach of the 
order in amorphous structures. We present here some analytical calculations of 
the interference function for ideal models-

I - INTRODUCTION 

The structure of condensed matter results from the competition between local interac
tions, topologic and geometric rules imposed by the space filling requirement. It is 
thus an exception when there is no discrepancy between the two types of rules. 
In other cases, the structure results from a compromise. To analyze this problem, as a 
first step, we do not impose to Euclidean space. So we let the space in which 
the structure is growing, be defined by a propagation, from point to point, of local 
geometrical properties. One of these fundamental properties is the curvature of the 
space. If we consider a structure in which there is no change in the local interac
tion (no change in the chemical composition), the curvature must be constant and 
consequently the underlying space can be spherical, hyperbolic or eventually eucli-
dean. In the first part of this paper, the curved space approach is detailed using 
the example of the tetrahedral packing which can be a model for pure amorphous me
tals. Metallic atoms are considered to interact with a spherical potential and conse
quently to pack together like spheres. Locally, spheres have their centres on tetra
hedron vertices. But on a large scale.there are some difficulties,due to the impossi
bility to fill Euclidean space with regular tetrahedra.Only if the space is given a 
curvature, can it then be tiled by regular tetrahedra. The complete description of the 
structure is achieved if a network of defects can be introduced in order to cancel 
the curvature. In the second part, we present some analytical calculations of inter
ference and radial distribution functions of the ideal models described in curved 
space. Indeed it is possible to define an equivalent to the S(q) function characte
rizing amorphous structures. This has already been presented by D. Nelson and 
M. Widom, using hyperspherical harmonics defined in the 4D space (1). Our description 
gives similar results but is obtained with a simpler formalism comparable to Debye 
analysis. 

II - SPHERE PACKING AND THE (3.3.5) POLYTOPE 

If one tries to pack spheres in a dense way by a discrete agregation process, one 
easily finds that the regular tetrahedron (where a sphere is placed at the tetrahe 
dron vertices) is the best solution with N = 4 spheres. 5 tetrahedra can share a 
common edge, but a void necessarily remains between two triangular faces (fig. lb). 
This is due to the fact that the tetrahedron dihedral angle(^70°) is not a submulti-
ple of 2ir. This misfit angle manifests itself when one tries to propagate the tetra
hedral local configuration and completely surrounds a given vertex. An imperfect 
icosahedron is then obtained (fig. lc). Note that amorphous metal structure is well 
described by the so-called pseudo icosahedral ("compact or polytetrahedral") models. 
It is desirable to define an ideal model in which the space can be perfectly tiled 
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Fig. 1. : The dihedral angle of a tetrahedron (a) is not a submultiple of 2a. Five 
tetrahedra with a common edge leave asmallunfilledspace (b).Animper- 
fect icosahedron (c) with a misfit between dashed faces. 

by tetrahedra. This is achieved using an S3 spherical space. This hypersphere can be 
embedded in the 4D euclidean space with equation : 

Note that only 3 of the 4 coodinates are independent, S3 being a 3D (curved) mani- 
fold. In term of the tetrahedron edge length, the radius of curvature is 
R = (1 + J5)/2. The perfect tetrahedral packing on S3 is called a "polytope" (the 
analogue of a polyhedroninahigherdimension) .  This polytope is a finite structure 
(53 is finite) and contains 120 vertices. Exactly 5 tetrahedra share a common edge 
and each vertex has 12 neighbours in a perfect icosahedral configuration. This poly- 
tope is called (3,3,51 using the standard Schlaffli notation and is well described 
by Coxeter. We now proceed to present its structure as simply as possible. One can 
use a 2D analogy. Suppose one tries to represent, on the euclidean plane, geometri- 
cal configurations belonging to the surface of a sphere. The simplest way to do it, 
is to generate orthogonal mapping. If the plane is tangent to the north pole, the 
set of parallels (in the geographical sense) is mapped into a bundle of concentric 
circles. As long as the mapped region remains small (in any case restricted to the 
northern hemisphere), the configuration on the plane is a rather faithfull image 
of the geometry on the sphere. In the case of a hypersphere S3 orthogonally mapped 
on a tangent hyperplane at the "north" pole, one gets a bundle of concentric spheres 
centered at the pole. So if the polytope is oriented in such a way that one vertex 
coincides with the pole, the set of successive coordination shells are recovered 
after the mapping. (2). 

111 - THE {3,3,5) RADIAL DISTRIBUTION FUNCTION 

We have to determine the number of (3,3,5} vertices at the distance (arc length) r 
or a given vertex. The description of the (3,3,5} polytope shell by shell (fig. 2) 
surrounding the pole leads to this function N(r). This function is a set of delta 
functions, as the polytope is a perfect regular structure. The table I shows these 
numbers depending on the angular distance I). (r = R. I) where R is the 3. sphere 
radius) . 



Fig. 2. : Representation in 
lower dimension of 
the different shells 
in the 3D space. 
In 3D space, the 
successive shells 
are : 

a) an icosahedron 
(coordination 
polyhedron) 

b) a dodecahedron 
(2nd neighbours 
of the vertex on 
the pole) 

C) an icosahedron, 
but two vertices 
of this icosahe- 
dron are not first 
neighbour 

d) an icosidodecahe- 
dron in equatorial 
position on the 3D 
sphere 

The same polyhedra 
occur in reverse order 
in the opposite hemi 
(hyper) sphere. 

TABLE I 

a ; =  0 ~ / 5  ~ 1 3  2 ~ / 5  ~ / 2  3 ~ 1 5  2 ~ / 5  4 ~ / 5  n 

N. = 1 12 20 12 30 12 20 12 1 

The radial distribution function for a model obtained by mapping the {3,3,5} polyto- 
pe on euclidean space corres~onds to a distorsion of the N(r) function which can be 
described by a broadening of the delta functions (3). 
In Euclidean space a radial distribution function G(r) oscillates around a parabolic 
function g (r) = 4 T r2po where p is the atomic density. In spherical space, 

O2 2 the equivalent function g ($) = 4 n R po sin $ which is the same function for 

small $, but decrease down to zero for $ = R (the opposite pole to the origin). 
The,+ variation domain is LO, T], but it seems accurate to extend the function from 
-m to +m in order to have a periodic function. We repeat with the same periodicity 
the function N(+). This function is the radial distribution of a chain of polytope 
glued poles to poles in a linear way. The distance is measured on geodesic lines 
(great circles) from on pole. 

IV - THE STRUCTURE FACTOR OF POLYTOPES 

The structure factor in Euclidean space is defined by 
m 

sin (K.r) 
S(K) = J~ 4 1 r2 ~ ( r )  K.r dr 
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it is an analysis in terms of spherical wave amplitude sin (K.r)/(K.r). 
In a space with positive curvature concentric spherical waves have an amplitude 
sin (!?,.@)/(!?,.sin @). As the spherical space is finite, there are only a discrete 
set of concentric waves : the number R is an integer. In order to have the same 
notation as in ref ( 1) we call this number n + 1. This can also be justified by 
comparison of the value of sin (K r)l K r for K + 0 and the value of 
sin([n+l]$)l(ln+l]sin@) , for n = 0 which are both equal to unity. 
In order to introduce a structure factor for the polytope we make the association 
of variables in spherical space and in Euclidean svace. 

2 
4 IT sin @ % 4 71 r2 (we suppose R = 1) 
N (@) 2, G (r) 
n +  1 % K (the modulus-of the reciprocal space vector). Note that Nelson 

et al. ldentlfy K to J- 

We can define the atomic densitv n (n+2) 

p(r) = in euclidean space 
471r 

and TI(@) = N(@) in spherical space 
4rsin @ 

Now the structure factor in spherical space is defined using these analogies. 
71 

sin((n+l) .$) 

2 sin (K.r) dr 
compare to S(K) = lo 47fr . p(r). K.r 

If we introduce a mean density qo (po in euclidean space), it follows : 
71 sin ((n+l).$) d@ + t 

sn = Jo 4n sin2 @. ( n ( l )  - no). (n+l). sin 

t = 0 for all n, but t = N for n = 0 (No is the total number of vertices on the 
polytope). 

471 no 71 
S = 
n 

Jo sin @. ( - - 1) sin(n+l).$)d@ 
(n+l) no . . 

4 7 1 ~ ~  
compare to S(K) = - Jo r ( --I) sin (K.r) dr 

K Po 
rl ($) S is related to the Fourier component of the periodic function sin @. (- -1). n 
no 

The function q(@) is a set of delta functions and consequently : 
sin [(n+l) .qi ] 

s = -  
n ncl L N i  sin); 

i 

where N. and J, are in table I for the {3,3,53 polytope. 
i 

V - THE STRUCTURE FACTOR OF THE {3,3,5) POLYTOPE 

Due to the symmetrical repartition of shells relative to the Great Sphere (JIG) 
only Sn with even n are different from zero. For n < 60, Sn 0 for n = 0, 12, 

20, 24, 30, 32, 36, 40, 42, 44, 48, 50, 52, 54, 56. 
For n > 60, Sn f 0 for all even n. 

The S- values are given by : 
n 

(n+l)Sn = 120 x integer ( T )  + S mod.60 showing that (n+l)S is the sum of a pe- 

riodic function defined by S = 120 for n = 0, 12, 20,..... 56 and a staircase func- 
tion 120 x integer (n/60). 
If we suppress the scattering due to the point at origin, as is usually done in 
conventional non-crystalline diffraction studies a reduced structure factor 
s = (n+l) (Sn - 1 )  can be defined. It is associated to the usual function 



i(K) = K.[I(K) - 11. The s function (fig. 3) oscillates around zero and can be com- 

pared to the amorphous metal structure factor. 

Fig. 3. : The s function is slightly broadened (on three points). It is a periodic 
n 

function of period n = 60. It can be compared to currently obtained 
interference functions with metallic amorphous alloys. 

In a first approximation it can be supposed that disclinations rnix different s func- n tion of different internal scale. In a polytope containing a network of discli- 
nation which is obtained by the iterative inflation method (4), involving a scaling 
factor close to 3, the s function presents peaks at n = 12, 20, 24, 30, ... but also 
at n = 36, 60, 72, 90.. .". Peaks of this last family are stronger than in the 
first one. 
In a continuous limit the "structure factor" of a disclinated polytope can be 
written : 

m 

a(n) = lo A (a) S (cm) da 

The A(ct) function is characteristic of the disclination distribution. At present,we 
do notknowhowto solve it analytically, but computer studies will give informations 
in order to understand this problem. 
Studies of experimental results using this formalism will also be a good approach 
to understand disordered structures. 
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