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QUASICRYSTALS 

D .  Levine 

Department o f  Physics, University o f  Pennsylvania, Philadelphia, PA 19104, 
U.S.A. 

RQsumB: On introduit le concept de quasicristaux et  on discute leurs cliches de diffrac- 
tion. On avance l'idke que isomorphisme loca l  a un sens physique. 

A b s t r a c t :  We introduce the concept of quasicrystals and discuss their diffraction patterns. 
The idea of local isomorphism is argued to be a physically meaningful one. 

1 INTRODUCTION 

A long-established belief in crystallography is that solid matter can only exist in one of two 
states: crystalline and glassy. Crystals are highly ordered arrays of atoms; they have long range 
periodic translational order, long range bond orientational order, and point group rotational sym- 
metry. These last are strongly constrained by the requirement of periodicity of the lattice, and this 
is the reason that  there are so few Bravais lattices possible. Indeed, in two dimensions the unit 
cell of a periodic lattice must have one of only five possible symmetries, and just fourteen Bravais 
lattices are possible in three dimensions. By contrast, a glassy structure does not have any of the 
long range order present in a crystal. 

One of the methods used to ascertain the nature and the extent of the order is scattering 
(electrons, X-rays, neutrons) off the sample. The diffraction pattern of a crystal is vastly different 
from that  of a glass. A crystal diffraction pattern consists of a periodic array of sharp Bragg peaks, 
and has a rotational symmetry reflecting the crystal's bond orientational order, or equivalently, its 
point symmetry. The diffraction pattern expected for a glass is diffuse, consisting of rings. Since 
the orientational order of a crystal can only be one of a restricted class, it would come as a great 
surprise if a diffraction pattern was comprised of Bragg peaks but had a "disallowedn rotation 
symmetry. 

Recently, we introduced the concept of quasicrystals, a novel state of solid matter possessing 
some of the characteristics of both a crystal and a glass. Like a crystal, a quasicrystal possesses 
long range translational order, but  this order is not periodic, but rather quasiperiodic [I],  a very 
general type of order which includes periodicity as a special case. The relaxation of the demand 
that  the translational order be periodic has the consequence that  there is a much richer class of 
"Bravais lattices" possible for quasicrystal structures than may exist for ordinary crystals. In 
particular, while it is a theorem that  no crystal may possess axes of fivefold rotation, this is not 
necessarily so for quasicrystals, as we shall discuss presently. Quasicrystals also possess the long 
range bond orientational order present in crystals, but have no point group rotational symmetry. 

A quasicrystal's bond orientational order and quasiperiodic translational order combine to  pro- 
duce one of the quasicrystal's most distinctive and striking features, a diffraction pattern consist- 
ing of delta function Bragg peaks in an array possessing crystallographically "disallowedn rotation 
symmetry 21. The fact that the quasicrystal has sharp diffraction peaks is directly related to  its d quasiperio ic translational order, and the rotation symmetry of the pattern is a reflection of its 
bond orientational order. It appears that the recently reported "icosahedral phase" of aluminum 
and manganese (I-AIMn) 13; [4] may in fact be an example of a quasicrystal 121. It has an electron 
diffraction pattern which consists of sharp peaks, but the overall rotation symmetry of the pattern 
is icosahedral, which is incompatible with periodic space filling. 
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Fig (1): (a) Portion of a Penrose tiling. 

(b) The  tiles in (a) are decorated as shown and the resulting Ammann quasilattice is depicted. 

A prototype quasicrystal, which in fact motivated our study, is the Penrose tilings of the plane 
[5] [B], a portion of which is shown in Figure l (a ) .  As may be seen, the Penrose tilings employ 
two rhombic unit cells (here the meaning of "unit cell" has been corrupted to include more than 
one shape which repeatthroughout the stucture, but not necessarily periodically) which fill space 
in a very well ordered fashion. This order is based on the pentagon, a symmetry which is not 
allowed for two dimensional crystals. However, the Penrose tilings satisfy all the criteria for being 
a pentagonal quasicrystal: (1) they have perfect pentagonal bond orientational order - all the 
near-neighbor bonds are aligned along the axes of a regular pentagon, (2) their lattice sites are 
separated by some minimal distance, (3) they have quasiperiodic translational order as can be 
seen in Figure l (b )  in which each of the two unit cells has been decorated with line segments as 
indicated to  the right of the figure. In the actual tiling these segments join t o  form five sets of 
parallel lines oriented normal to  the five axes of a regular pentagon and spaced according t o  the 
Fibonacci sequence 

where T = golden ratio = (1 + 5)/2; a and /? are arbitrary real numbers and where 11's represent 
the greatest integer function. 6 his sequence is itself quasiperiodic, and the intersections of these 
sets of lines is called the Ammann quasilattice after R. Ammann [7 who was the first to  recognize 
its significance in connection with the Penrose tilings. It  shoul d be noted that  the Ammann 
quasilattice itself fulfills all of the above requirements of a quasicrystal, in particular there is a 
minimal separation between any two quasilattice points. This is, of course, essential if we are 
to  be able t o  consider the Penrose tilings as decorations of the Ammann quasilattices. Indeed, 
the decoration of the individual tiles by line segments in the Ammann fashion constitutes one 
realization of matching rules for the tiles, conditions which ensure that  no periodic arrangement 
is possible using these tiles. We demand that  if two tiles are to  lie adjacent t o  one another, 
their Ammann line segments must join t o  form longer segments and, in the limit of large tilings, 
unbroken lines. 

An additional property that the Penrose tilings possess is self-similarity in the sense that  a 
subset of its vertices may be erased in a process called deflation, leaving another Penrose tiling. Self 
similarity is a consequence of the high degree of symmetry of the pentagon upon which the Penrose 
tilings are based, and is also a property of the icosahedral quasicrystal [8]. However, quasicrystals 
with arbitrary orientational symmetry may be constructed, for example by the Generalized Dual 
Method (GDM) 19 , (an extension of a technique of de Bruijn [ lo])  and such quasicrystals will, in 
general, not be sel 1 -similar. 

The  Penrose tilings of two dimensions suggest an analog in three dimensions which is based on 
the icosahedron. The unit cells for the icosahedral quasicrystal packing may be taken t o  be two 
rhombohedra, first introduced in this context by R. Ammann [ll]. An icosahedral packing more 
closely akin t o  the Penrose tilings, in that  it possesses simple matching and deflation rules, employs 
four zonohedral unit cells 1121 1131, each of which may be decon~posed into the rhombohedra. 
Elegant methods involving projection from a six- dimensional hypercubic lattice have also produced 
icosahedral quasicrystal packings by the two rhombohedra mentioned above [lo] [14] 1151 [16] [17]. 

The aforementioned projection methods generate only one class of icosahedral quasicrystals in 
the sense of local isomorphism (which we shall return to  in Section 3), whereas the GDM appears 



to generate the widest set of tilings in this sense. Two tilings are said to be locally isomorphic if 
any bounded region which appears in one appears in the other, and vice versa. This property is an 
equivalence relation, and thereby allows for a partition of quasicrystals into local isomorphism (LI) 
classes. As will be argued presently, the concept of local isomorphism is a physically meaningful 
one, and tilings belonging to different local isomorphism classes may in fact have distinct physical 
properties. 

The diffraction pattern of the icosahedral quasicrystal consists of a set of Bragg peaks that 
densely fill reciprocal space in an array with icosahedral symmetry. To explain this result, we will 
first consider the case of a one-dimensional quasicrystal with atomic positions given by Eq. (1). 
This particular example is central to the study of the pentagonal and icosahedral quasilattices. 
The atomic positions of the 1D (Fibonacci) quasicrystal described by Eq. (I) may be re-expressed 

where the "{ In  brackets signify the fractional part (or mod 1) function and we have used the fact 
that , ( I+  5) = 4. (An identity is x = Lxj + {x}. The function {x) is periodic in x with period 
1.) This expression is of the general form: 

where F(z)  .is periodic in x with period b and a/b is irrational. Expressions of this variety arise in 
the study of the Frenkel-Kontorova model [18], which describes a 1D incommensurate crystal. 
The Fourier transform of such a set of atomic positions consists of Bragg peaks at positions 
k = + q, where M and N are integers. This result may be obtained by expanding the 
exponential ezp ( ikF(na + 4)) appearing in the expression for the transform in a Fourier series 
of its own and employing the completeness relation for complex exponentials. For our case, this 
means that there will be peaks at 

where p and q are integers. 
With this in mind, we will compute the diffraction pattern (i.e. Fourier transform) of the 1D 

quasicrystal of Eq. (2): 
1 

fl (k) = lim - exp(ikzn) 
N--03 N 

where we are summing over the N atomic positions in the chain. First, consider ji(k) for k of the 
form, k = k,,, as defined in Eq. (4); noting the identity r ( l  + 5) = &, the exponent in Eq. (5) is 
given by: 

ikp,xn = 27ri p n + q ?) + kp, (f + a - 1 ( 3  + p } )  
= 27ri I p n + q l s + ~ J )  + i ( 2 n q - p ) { ~ + ~ }  (6) 

+ikPqcr - i (2nq - %) P. 
The first term in the final expression is an integer times 2ai, and therefore only yields a factor of 
unity upon exponentiation. The last two terms are independent of n, and so only contribute an 
overall phase factor to jl(k). The second term, however, is n-dependent and contributes to the 
sum in an important fashion. Since 0 5 {: + P) 5 1, the second term lies between zero and iX, 
where X E 27rq - %. Since 7 is an irrational number, the value of the second term is uniformly 
and densely distributed in the interval (0, X), enabling us to approximate the sum in Eq. (5) by 
an integral: 

where $ ~1 kp,a - (27rq - +) ,B and y 3 11 + 5 .  
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Eq. (7) is the value of jl(k) for the special values k = k,,, which, we argued, correspond to the 
posltlons of Bragg peaks. Thus, we conclude that 

Those familiar with the computation of the Fourier transform of the 1D quasicrystal via projection 
methods 1151 [19] (which appeared subsequent to Ref. 2) will recognize that the two methods agree 
exactly. 

The brightest spots occur for those k = kp, where X is small. This occurs when is close to  
T. It is well known that the best rational approximants to 7 occur when g and p are successive 
Fibonacci numbers. F,. This means that the seauence of most intense peaks corresponds to , .- 
(P, Q )  = (Fa+i, Fn). 

The diffraction pattern of the 3D quasicrystal is simply related to the Fourier transform of 
the 1D quasicrystal, just as the 3D crystal diffraction pattern is simply expressed in terms of the 
transform of a 1D crystal. In Ref. 2, we presented the diffraction pattern for the quasilattice 
underlying the icosahedral packing. This pattern has the quasiperiodicity and orientational sym- 
metry of the packing itself since the unit cells can be viewed as a decoration of the quasilattice. 
Also, the diffraction pattern of the quasilattice should have Bragg peaks in the same places as the 
icosahedral packing except for possible extinctions (as found in going from sc, say, to fcc crystal 
lattices). Thus, the diffraction pattern of the quasilattice embodies a11 of the essential features of 
the diffraction pattern for the packing. 

The quasilattice for a three-dimensional tiling is composed from sets of quasiperiodically spaced 
parallel planes. There are five models with icosahedral orientational order 1201 [21] [12]. The 
model which appears to correspond most closely to the Al-Mn alloy is called the vertex model; 
its quasilattice is constructed out of six sets of planes oriented normal to the six.axes ei of an 
icosahedron, each set spaced according to Eq. (1). The 3D Fourier transform of the quasilattice 
breaks up into a product of 1D transforms and can be written: 

Fig (2): (a-c) The computed diffraction pattern of the Ammann quasilattice 
normal to the fivefold, threefold, and 2x2-fold symmetry axes of an icosahedron. 
(d) The computed diffraction pattern of the modified quasilattice normal to the 
2x2-fold axis of an icosahedron. 

Our computation of the diffraction pattern for the quasilattice is shown in Fig. 2(a-c); that is, 
the Figure shows the diffraction pattern for an ideal model in which identical atoms are placed at 
each point of the quasilattice. The agreement with the observations reported by Shechtman, et a1 
131 is remarkable; every diffraction spot observed experimentally appears in our computation. For 
the five-fold and three-fold symmetry axes the agreement is perfect. For the 2x2-fold pattern, there 
are extra spots in the quasilattice diffraction pattern that do not appear for I-AIMn. By decorating 
the quasilattice (similar to going from sc to fcc lattices), the unwanted quasilattice spots can be 
extinguished. As it turns out, the simplest decoration that extinguishes the unwanted spots is to 
put identical atoms a t  the vertices of the rhombohedra] packing that decorates the quasilattice (151 
1161 1171. 



It  is interesting t o  note that the extinction of the unwanted spots can also be obtained by a 
simple modification of the quasilattice; for example, consider planes spaced by 

The diffraction patterns of the the rhombohedra1 packing and this modified quasilattice will have 
Bragg peaks a t  precisely the same points. The intensities of the two patterns will differ, but since 
neither corresponds t o  a realistic atomic model (e.g., both have identical point scatterers) there is 
no need t o  be very concerned about such quantitative differences. In Fig. 2(d) we show a picture 
of the  diffraction pattern for this modified quasilattice, which it can be seen, incorporates the 
relevant extinctions. 

Two quasicrystals are locally isomorphic if and only if every finite configuration of vertices 
that  appears in each quasicrystal appears in the other. A quasicrystal in one LI class will have 
configurations of vertices that  do not appear in a quasicrystal in a different LI class. 

Local isomorphism has physical significance. In particular, two quasicrystals have identical 
diffraction patterns if and only if they are locally isomorphic. Two quasicrystals in distinct LI 
classes have diffraction patterns with Bragg peaks in the same locations, but  the peak intensities 
differ. Intuitively, one expects two locally isomorphic quasicrystals to  have the same diffraction 
pattern because they are locally equivalent. Any finite bounded region which occurs in one also 
occurs in the  other, and hence no local measurement can distinguish the two structures. There 
are some shifts in the (a i ,  Pi), though, that  leave the Bragg peak intensities unchanged. These 
changes correspond either t o  translations of the quasilattice, or to shifts from one quasilattice t o  
another in the same LI class. 

The  shifts that  leave the intensities unchanged are of the form (ai,  Pi)+ (a:, P,!) where 

for all I, where z and z' are independent arbitrary 3-vectors. The "0" brackets represent a n  
operation such that  e(,)*= ep,, rnod5) if n = 0, ... 4, and e(,). = -en if n = 5. The vectors ei and e(,) 
are related t o  the two different 3D representations of the lcosahedral group. 

Shifts of ai of the form shown in Eq. (11) correspond t o  translations of the quasilattice The 
shift of the Pi in Eq. (12) corresponds to  a more subtle transformation of the lattice. In general, the 
shijt produces a new quasilattice that is locally isomorphic to  the original. One may show that  the 
shifts in ai and Pi given above represent the most general shifts which do not affect the intensities 
of the spots in the diffraction pattern. 

In general, there are infinitely many distinct LI classes (corresponding, for example, to  shifts 
in the (ai,  Pi) which are not of the form shown in Eqs. (11) and (12)). No such issue arises for the 
case of periodic crystals where there is a unique configuration of cells - a single LI class containing 
one element. As stated above, two quasicrystals have diffraction patterns with identical intensities 
if and only if they are locally isomorphic. This suggests some further physical consequences: 

Whereas modulations in the Bragg peak intensities for ideal crystals can be used to directly 
probe the atomic decorations of the unit cell, for quasicrystals the situation is more compli- 
cated. Modulations in intensity can be obtained not only by changing the atomic decorations 
of the (two or more) unit cells, but  also by changing from one LI class of unit cell packings 
to  another. 

The density wave description is in terms of the Fourier components of the density and the 
expression for the Landau mean free energy is expressed in terms of these components. In 
general, the free energy depends on both the phases and magnitudes of the components. Since 
two quasilattices in the same LI class have the same Fourier transform (except for an overall 
phase shift), their free energy must be the same, but two quasilattices in different LI classes 
may have different free energies, unless there is some accidental degeneracy. As support for 
this conclusion, note that  in Ref. 22 it was shown that  the density wave expansion for the 
Landau mean free energy of the icosahedral quasicrystal is invariant under phase shifts in 
the density waves (Fourier components) that correspond precisely t o  Eqs. (11) and (12). 
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Given this conjecture, if the ground state of a some physical system is a quasicrystal state, 
as determined by minimizing the Landau mean free energy, then it is degenerate and corre- 
sponds to a set of configurations in a single LI class (neglecting the possibility of accidental 
degeneracy). This fact must be considered in entropy estimates to avoid vast overcounting. 

Only experiment can ultimately determine whether a physical system is indeed in a quasicrys- 
talline state. Whatever the case for I-AIMn, it is apparent that a whole class of new atomic 
structures for solids is possible, corresponding to a new phase of matter with unique symmetries 
and physical properties. Traditional concepts, such as the impossibility of five-fold symmetry, 
must be abandoned. We are hopeful that nature will take frequent advantage of such an intriguing 
possibility. 
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