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ELASTIC  ENERGY OF FACETED LOW ANGLE T I L T  BOUNDARIES 

Laboratory o f  Atomic and Solid S ta te  Physics, and Materials Science Center, 
Come22 University, Ithaca, NY 14853, U.S. A. 

Abstract. A closed form expression for the elastic energy of an arbitrary small angle tilt 
boundary is derived and used to study grain boundary faceting in NiO. Results are in 
good agreement with experiment. It is found that the rules of the 0-lattice model, 
which is also successful in explaining the boundary structure in NiO, may be justified 
by and derived from the present elastic energy formalism. 

I. INTRODUCTION 
It was shown many years ago that a small angle grain boundary may be modeled in a 

geometrically and physically sensible way by an array of dislocation lines[l]. Historically, this 
description was first used for the simplest possible boundaries; for example, the symmetrical 
small angle tilt boundary was shown[l] t o  consist of a set of identical, coplanar, parallel edge 
dislocations. The situation is not quite as simple in the case of lower-symmetry tilt boundaries 
where the interface lies along a high Miller index plane, which have recently been studied by 
electron microscopy[2]. For these boundaries Frank's formula[3] requires that more than one 
type of dislocation be present in the boundary, and there is no symmetry condition requiring the 
dislocation array to  be planar; indeed, the dislocations in these boundaries are observed to 
assume a faceted structure(21. 

An explanation for this faceting geometry has been constructed using the 0-lattice 
model[4]. This model finds the points of "best match" between the two crystals (the 0-points, 
or 0-llnes) b y  a geometrical construction, then ~ s t u l a t e s  th& the boundary dislocations will 
occur midway between the 0 - p o x .  This EoTel has successfully obtained the faceting struc- 
tures as seen in experiment[2]. The 0-lattice model is incomplete, however, in that it does not 
address the question which arises naturally within linear elasticity theory: are the grain boun- 
dary dislocations in elastic equilibrium? In other words, are the dislocations in positions which 
minimize the elastic energy of the boundary? 

In this paper I will answer these questions by an exact evaluation of the energy of an arbi- 
trary small angle tilt boundary within linear elasticity theory. This calculation goes beyond the 
0-lattice theory by providing a genuine prediction of grain boundary structure, not just a 
geometrically-inspired guess. In the cases considered below, it is found that the 0-lattice model 
predicts dislocation positions which are very .nearly (although not precisely) in elastic equili- 
brium. As will be discussed below, the 0-lattice model obeys some simple rules that are deriv- 
able from linear elasticity theory, which allow it to give sensible predictions for most cases. 

In the remainder of the paper I will examine in detail two faceted tilt boundages which 
have been studied in NiO: one with a tilt axis in the [OOl] direction, the other in the [209] direc- 
tion. NiO is an fcc ceramic; however, the theory to presented is quite general and applies to any 
isotropic solid. 

II. FORMALISM 
Dislocations are well-defined topological entities in ,linear elasticity theory, singularities 

which arise from the multi-valuedness of the lattice displacement field. They produce certain 
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Fig.1. Two parallel dislocations with Burgers vectors r1 and r2 separated by %j. The two 
dislocations have the lo~vest interaction energy when O1=Oz. 

unique stress and strain fields in the elastic medium. Since stress times strain is energy, their 
presence changes the energy density of the medium in an exactly calculable way. If the medium 
contains two dislocations i and j, the resulting stress and strain fields in the medium are, in the 
linear approximation (which is correct so long as the dislocation cores do not overlap), simply 
given by the superposition of the fields emanating from the two dislocations. From this the 
energy density and the resulting energy of interaction V;i may be computed. Consider two 
straight parallel+dislocations (Fig. 1) running along direction <, i.e., out of the paper), zne  with 
Burgers vector b a t  position T1, the other with Burgers vector 6 2  a t  position T1. The  b 's must 
be lattice vectors of the crystal, but th$y may have a component pointing into (or out of) the 
plane of Fig. 1. It is assumed here that E.tI2=0. The resulting interaction energy is[5,6]: 

- - A  B is related to S by B = & t ( b ; < ) + i ~ ( S ~ i )  (amounting to a compression of the coordinate 
system along the dislocation axis E ) ,  and K =p/2n(l-u). Here p is the shear modulus and u is 
the Poisson ratio. 

I have used the isotropic approximation, in which the elastic constants of the solid are 
assumed to  be related by ~ c ~ ~ = c  12; this condition is reasonably well satisfied in NiO, for 
which(71 p=0.97X 10- '~d~n /c rn~  and -0.27. The results below are rather insensitive t o  the 
actual values of these elastic constants, and so it seems likely that the isotropic approximation 
itself is not very crucial. Note that Eq. ( I )  is only determined to within an additive constant, 
which is usually absorbed within an (unknown) core-radius and core energy. The expression 
given @eve actually differs from that  given on p.117 of 151 by an additive constant 
K((x(bi  x t ) ) . ( t x (b j  x t)). This will not a5ect the analysis below, where I will only be con- 
cerned with the relatlve energy of two different configurations. 

In a pure tilt boundary (in which the d4ection of the rotation axis 8 lies in the boundary 
plane) all dislocation lines are parallel to the 6 axis. A general small angle tilt boundary is illus- 

Fig.2. A general small anxle tilt boundary. The different symbols represent dislocations with 
Burgers vectors b l, b2 + - . at  positions tl, F2 . - .. The structure of the boundary is 
assumed to be periodic with period vector ii with n dislocations per period. 



z a t e d  in Fig. 2, with dislocations a t  positions ?,, 72, . . . ?* with Burgers vectors TI,. r 2 ,  . - . 
6,. The dislocation structure of the boundary is assumed t o  be periodic with period Z .  Note 
that the dislocations need not lie in the same plane as a. The  dislocation content of the boun- 
dary is not entirely arbitrary, however; it  must satisfy a geometrical constraint, Frank's for- 
mula[3,5]: Ctml bi =a ~ 3 .  Within this constraint, however, a wide variety of dislocation 
configurations are possible. T o  decide among them, I will minimize the energy of the array of 
dislocations as a function of their positions {$ } using the formula above. One might think of 
writing the energy per unit area of the boundary as E =l /a  Ci E;C0"+1/2a Cij qj, where 
EeorC is the core energy of the dislocation. Unfortunately, this expression as written is diver- 
gent because of the arbitrary (and unknown) constant in Vij mentioned above. This problem is 
solved by defining a particular reference boundary t o  have zero energy, say the one for which 
the dislocation positions are 3'. 

T h e  energy difference between the reference boundary and the boundary of interest, 
r 

is a well converged quantity, and can be used to look for equilibrium geometries of boundary 
structures by minimizing E. T h e  infinite sum over unit cells k in Eq. (2) can actually be 
evaluated in closed form; the result, after some tedious algebra, is 

H e r e 7 i j ~ % j / a ,  3 j ~ % - T ,  A i = a . Z / a ,  and c o s e ~ - = - i f ~ ~ / a r i j .  Also, E ;  is 
the same as E2 with replaced by r;, , Oij replaced by 8 6 ,  etc. i5eJpite t i e  complexity of this 
formula, its evaluation on a computer is quite straightforward. Thus, the strategy for any par- 
ticular boundary of 'interest is simply to find the positions {%} which minimize the boundary 
energy E in Eq. (3) for a particular set of dislocations {q ). 
m. [OOI] BOUNDARY 

Figure 3 shows the dislocation structure as observed by electron microscopy[2] in a 0 x 1  ' 
tilt boundary in NiO. The  tilt axis is along the low-index direction [OOl], but the boundary 
plane itself is not a low Miller index plane, and the boundary period vector Z (dashed line in 
Fig. 2) points away from the [110] direction by -3.6 '. Thus it is not possible to satisfy Frank's 
formula with only one tyee of fcc Burgers vector; it can be satisfied, however, if the boundary 
period contains eight 1/2[110] dislocations for every one 1/2[110] dislocations. Since the  boun- 
dary period is observed to contain nine dislocations, this would seem a reasonable hypothesis. A 
boundary structure which is consistent with the 0-lattice model[2] would place the eight 
1/2[il0] in a single facet lying precisely along the [llO] (median) direction, with the  1/2[110] 
dislocation lying in a step, with 4=45 '. The  points in Fig. 4 show this 0-lattice prediction for 
one period of the boundary in Fig. 3. 

This structure is in reasonable agreement with experiment, so I have taken the 0-lattice 
structure to  be the reference configuration (see Eq. (2) above) in a dislocation energy calculation. 
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Fig.3 The dislocation structure as seen in electron microscopy[2,8] of a e=[001] tilt boundary 
In NiO. Note the faceted arrangement of the dislocations. 

Fig.4. One period of the boundary in Fig. 3. ii is shown as a dashed line, and the arrows show 
the Burgers vectors of the dislocations. In the 0-lattice model (solid points) the disloca- 
tions lie exactly on the solid lines and 4=45 '. In the fully relaxed configuration of the 
present calculation (open circles) the facet is significantly rounded. 

Fig.5. The dislocation structure as seen in electron microscopy[2,8] of a e=[T09] tilt boundary 
in NiO. Note the two different spot sizes, which is indicative of Burgers vectors of two 
different lengths. the dashed line encloses a defect in the faceting structure of the boun- 
dary. 

When I permit these dislocations to relax to  their minimum energy state, they assume the 
configuration shown as the open circles in Fig. 4. The deviation from the 0-lattice configuration 
is fairly small. The qualitative features of the facetinsis preserved, and the energy gained by 
relaxation from the 0-lattice positions, -1.0 erg/cm , is on the order of a percent of the 
estimated value of the total interfacial energy[5], 300erg/cm2. Rather than perfectly straight as 
in the 0-lattice model, the ends of theofacet are predicted to be significantly rounded, with dislo- 
cation positions being as much as 10A from the facet line; however, disorder in the experimen- 
tally observed structure (Fig. 3) causes both the 0-lattice result and the dislocation energy 
result to be equally plausible. Different sample preparation (e.g., longer anneal times) may per- 
mit an observation of this rounding, which would be an important confirmation of the grain 
boundary dislocation model. 

IV. [TOO] BOUNDARY 
Figure 5 shows the dislocation structure, as observed in electrqq mi~roscopy, of another tilt 

boundary in Ni0[2]. Here the tilt angle W12.25 ', the tilt axis 8=[209], and the boundary 
period vector Z lies about 6 from the [010] direction. This boundary is more complicated than 
the one above; for this geometry three different types of Burgers vectors are required to  satisfy 
Frank's formula. Also, the variation in the observed contrast of the dislocations in Fig. 5 sug- 
gests that dislocations with Burgers vectors of a t  least two different lengths occur. A set of 
dislocations consisting of three [loo] dislocations (A), two 1/2[101] dislocations (B), and one 
1/2[110] dislocation (C), will satisfy Frank's formula in this case. Since the observed boundary 
period actually contains s k  dislocations, three with heavy contmrast, this dislocation set seems to 



Fig.6. Theoretical analysis of the circled region of Fig. 5. T h e  boundary contains dislocations 
with three different Burgers vectors (arrows): A ([loo]), B (1/2[101]), and C (1/2[110]). The 
fully relaxed positions (open circles) are very close to  the 0-lattice positions (points). 

be a plausible hypothesis. The  0-lattice model[2] provides a possible dislocation structure which 
agrees closely with experi~nent, in which five of the dislocations lie in a straight facet along the 
[OlO] direction, with the lone 1/2[110] lying in a step; this configuration is shown as the  points in 
Fig. 6, which represents the circled region of the boundary in Fig. 5. 

Again I have used the 0-configuration as the reference structure in the energy calculation of 
Eq. (3) and determined the equilibrium configuration of the dislocations in the boundary. The  
resulting structure, shown as the open circles in Fig. 6, is very close to  0-lattice model (the 
difference is probably less than the available experimental resolution), and the gain in boundary 
energy from the 0-lattice t o  the fully relaxed geometry is only 2.2erg/cm2, just a fraction of a 
percent of the estimated interfacial energy[5] of 2000erg/cm2. A wide variety of other possible 
reconstruction geometries have been studied, and although other metastable states occur, the 
st.ructure shown in Fig. 6 has the lowest energy. Thus in this case the 0-lattice model is suc- 
cessful in predicting the equilibrium structure of the boundary. 

However, the present energy calculation is capable of giving more complete information 
about the actual structure of the grain boundary. For example, in the real boundary (Fig. 5) a 
defect occurs (dashed circle) in which the facet length changes from 5 to 8. Using a total energy 
calculation I have been able to  confirm that  this faceting fault is indeed a metastable 
configuration of the boundary, i.e., there is an energy barrier for it to  annihilate with a length 2 
facet and return to  the ground state. F!~rthermore, the excess line energy of this defect can be 
computed and is found to be - 8 m e ~ / i  , which is quite small on ' the  scale of line energies of 
free dislocations in solids[5]. 

In addition t o  this, the  dislocation energy calculation can provide information about the 
tendency of long Burgers vector dislocations (e.g., dislocation A in Fig. 6) t o  dissociate in the 
elastic energy calculation into two primitive dislocations. According to the "b-squared" cri- 
terion[8] (which should really be the  "Bsquaredn criterion, with B defined below Eq. (I)),  for 
small e_nough tilt angle the [loo] dislocations in this boundary must dissociate into 1/2[101] and 
1/2[101] dislocations. However, this is only required to  occur in the limit of vanishingly small 
tilt angle, and in other materials it  has been shown[8] that  the b-squared criterion need not be 
satisfied in the range of 0's of practical interest (8>1 '). In the present calculation, when a [loo] 
dislocation is permitted to  dissociate in the [209] boundary, the resulting dislocations equilibrate 
a t  a distance which is on the order of the core radius (--5A ); therefore, for all practical pur- 
poses the energy calculation predicts that  the [loo] dislocations do not dissociate in this boun- 
dary. 

V. DISCUSSION 
An important question which the present energy calculations can answer is: why does the 

0-lattice model work so well for the cases considered? I t  should be understood that  the 0- 
model cannot give a unique prediction for boundary structure; it can only give a list of reason- 
able candidates, which can only be decided between by experiments or by energy calculations. 
For example, the 0-lattice model can neverdetermine the tilt angle a t  which the b-squared cri- 
terion will begin t o  be violated as in the 12091 boundary above- However, the 0-lattice candi- 
dates which are shown in this paper for the observed [loo] and [209] boundaries are very close to 
the true elastic equilibrium geometries, despite the fact the usual justification for the 0-lattice 
predictions in terms of "best match" regions makes no reference t o  dislocation energetics. 
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The reason that the 0-lattice works is that it unintentionally incorporates some of the sim- 
plest rules of interdislocation forces. It is a consequence of the energy expression Eq. (1) that  
the equilibrium orientation for a single pair of dislocations (see Fig. 1) for a fixed I % j  I is 
achieved when 6',=02. & Figs. 4 and 6 illustrate, the 0-lattice rules conspire to satisfy this 
criterion. AnotEer simple rule which comes out of the energy expressions is that screw com- 
ponents on neighboring dislocations should be of opposite sign as often as possible; this is e m b e  
died in the 0-lattice rules for constructing the "stepp~d b-netn[2]. Still, this does not really 
explain why the 0-prediction is as good as it is for the 12091 boundary; from the point of view of 
the present calculation, this must be viewed as simply an accident. 

In summary, I have obtained tractable, closed form energy expressions for the elastic energy 
of a general small angle tilt bounda.ry in isotropic solids. This formalism has been applied to 
two faceted boundaries in NiO. The boundary geometries are accurately predicted by the 
theory; the facet structure is a simple consequence of the different Burgers vector dislocations 
which must occur in the boundary. The 0-lattice model has also been successfully applied to 
these bo~indaries; the present work sheds some light on why the 0-model actually works. How- 
ever, the present energy calculations go beyond the 0-lattice analysjs by predicting the presence 
of metastable defects and ruling out dislocation dissociation in the 12091 boundary. 

I thank Dr. M. D. Vaudin and Profs. S. L. Sass, J. W. Wilkins, and N. W. Ashcroft for 
helpful discussions. This work is supported by the National Science Foundation through the 
Materials Science Center a t  Cornell University. 
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