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Résumé ~ Nous étudions la relation entre les propriétés classiques d'un
potentiel nucléaire moyen et ses propriétés spectrales. Nous avons tracé

la surface d'énergie-action de ce potentiel et relié ses propriétés a celles
du spectre dans le cadre de la méthode semi-classique EBK. Nous décrivons
aussi une méthode permettant d'obtemir 1'évolution du.spectre en fonction
du nombre de masse.

Abstract - We study the relation between the classical properties of an
average nuclear potential and its spectral properties. We have drawn the
energy—action surface of this potential and related its properties to the
spectral ones in the framework of the EBK semiclassical method. We also
describe a method allowing us to get the evolution of the spectrum with the
mass number.

I - INTRODUCTION

This work is part of a study regarding classical dynamics of an average nuclear
potential and their relation, in the frame of EBK method /1/, with the quantum
properties of this potential. Certain of these properties will appear naturally

as a consequence of the dynamics of the underlying classical systems. This is the
case, for example,of the spectral properties (degeneracy, anharmonicities) which
can be related in a transparent way to the classical dynamics when it is described
in the action~angle variables.

The potential considered is a slightly modified version of the Saxon-Woods one in
order to avoid the singularity at r = O which is unsuitable for a classical treat-
ment. It was introduced in /2/ and is written

Ch % + 1
vWr) =-V ——— GD
° R T
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The parameters of the problem are A = % which measures the size of the nucleus
and n= 1+(E/Vs)The relation between R and the mass number A is given by R=1’0A1/3
and we fix the values a = 0.65 fm, ry, = 1.26 fm and V, = 52 MeV.

We have also introduced an ellipsoidal deformation, and a new parameter u with
it, by the change

X "2 2 2 2
. —> Xx+y +(—)

By doing this we have shown /3,4,5/ that the potential loses its integrability
and the particle may wander chaotically in the regions of the phase space of
which the size depends strongly on the three parameters of the problem : A,u,n.
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In this paper, however, one will only be concerned with the simplest case : that is
the spherical integrable case (g = 1) which needs to be understood fully before
considering the non integrable situation.

IT ~ EBK QUANTIZATION OF INTEGRABLE HAMILTONTANS

It is well known /6/ that the phase trajectories of am hamiltonian dynamical system,
integrable in the Liouville sense, lie in a N-dimensional manifold M which is dif-
feomorphous. to a torus. If Cq,...,C2 are N irreductible and independent contours on
M we can associate with each phase trajectory the N quantities defined by

1
Ii == - E . Py dq )

C o=1

We can also choose a certain parametrisation on M, {¢ ...¢N} in such a way that
{ 11,...IN,¢1,..,¢N} is a set of canonical coordlnates with the very interesting
property that the hamiltonian, when expressed in these coordinates, depends only

on Is. The quantities I and ¢ are called respectively action and angle variables.

For a given energy E, the actions are not independent but must satisfy the equation
H(I1,...IN)—E =0 (3)

We thus define a N-dimensional surface in the (Elb .y N) space : the energy-action
surface (EAS). Each trajectory is represented by a point on this surface and all
the dynamics of the system is contained on it.

In the case of a single particle in a spherical potential V(r), the usual angular
actions Ig and I /7/ appear in the hamiltonian only via their sum. This allows us
to reduce the EAE to a bidimensional one by defining a new action I, = Igp + I
which must be identified with the classical angular momentum 1l¢. We can therefore
represent this surface in the 3-dimensional space (E, I, I;). Its equation

=H(I, , I ) is implicitly given in the definition of t e radial action

_ .
1, = 55 #C pr(r,E,IL)dr (4)
r

which is nothing but the volume of the radial phase space accessible to the particle
for a given energy and angular momentum.

The EBK method consists in looking for the trajectories the actions of which satisfy

1
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The energies of these ''quantum" trajectories are either the same or slightly diffe-
rent from the eigenvalues of the Schrédinger equation., Usually this semiclassical
method 1s understood as an approximate means of calculating a spectrum. Nevertheless
if we take into account the fact that the scattered quantum trajectories are in fact
part of a continuum (the EAS) we can also expect that the properties of the spectrum
could be interpretated and, in a certain sense, understood through the properties

of this continuum. In fact to solve /5/ merely means choosing a lattice in the
action-surface and searching the image of this lattice in the purely classical ener-
gy surface : it is the properties of this surface which will therefore determine
those of the spectrum.
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III - APPLICATION TO THE NUCLEAR AVERAGE POTENTIAL

We have studied the EAS associated with the average nuclear potential {1). In order
to make the study of its properties easier, this surface will be represented either
by its sections n = cte (I = Fr (L) or I, = cte (I% (n)). All the actions are
given inAr units.

A= 16
VO=52MEV
2035 ]
= 2.0 Le=0
2 o ,’/S nQ Y]SC An
& ts  .3733  .3756 .61
< 135 7 T
2 ey 1p L6534 .6683 2.28
= 1a0 - 2s .9149 .9301 1.66
= -~ .,d
« 14 L9271 .9515  2.63
2D i
f
0.0 + T 7 1 .
0a0 =D 10 1eS Table I ~ Comparison between quan-—
ETA tum (ng) and EBK semi-
classical energies for
Fig. 1 - Radial action versus energy A = 16.
(n) for A = 16 Qo 1
An = ——SCTQ—' X 102
Q

Figure 1 shows the results for A=16. It shows the I#(n) sections for the values

L =0,1,2,3 defined in (S5 ). The dotted line corresponds to I} = O and, therefore,
does not contain any quantum trajectory. We notice the remarkable linearity of the-
se sections except, perhaps, at the extreme 1 2= 1 where the slope increases great-
ly. The EBK spectrum is obtained by making the intersection of these curves with
the straight lines I_ = n,. + 1. There are only 4 bound states and the semiclassical
energies thus obtained (ngg) are given in Table i. They are compared with the exact
quantum results (NQ) which we have calculated by using the Numerov-Cooley method

/8/.

The linearity of a section, the S-section for example, is related to the harmonici-
ties of the S-states in the spectrum. If we consider all of these sections we see
that it is their relative position which explains the formation of the multiplets.
The degeneracies of the harmonic oscillator (H.0.) would be obtained with linear,
parallel and equidistant sections, the distance between them being determined by
their common slope (1/2fiw). This is what happens for A = 16 as a good approximation.
The difference, that is the way in which an H.0. multiplet splits, is explained by
the different curvature. of the sections at the energy of the multiplet : the 2 s
state which is situated below the 1d state would be situated above it if the corres~
ponding radial action was linear in this region.

The curvature of a given L-section is therefore manifested either by a compression
of the. L-spectrum, when the slope increases, or by a dilatation in the opposite
case. We can easily understand this fact by realizing that the slope of an L-section
is related to the classical radial frequency wr by.

1
) = ——— (6
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and that the level spacing is given approximatively by AE =<ﬂw#. We can also see
that it is these curvature properties which explain both the gaps and the order of
levels when an H.O. multiplet splits. Obviously this curvature is related to the
potential in a more or less direct way. In our case it is the effect of the asympto-
tic region of the potential which gives the particle an extra radial phase space.

A=208
VO=S2ZMEY
405
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p—=d
S 365
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oS T 2p L4206 L4224+ .49
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— fm 1.4355 1.4368
Q
- .o
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150 Table I1 — The same as for

ANGULAR ACTION table I,but for
A = 208.

Fig. 3 - ¥= cte section of the EAS for
A = 208.The values represented
are n = 0.2, 0.4, 0.6,0.8,1.0,

1.2, 1.4, 1.6,1.8.

In Fig. 2 we have represented the I&(n) sections of the EAS for A = 208. The comple-
xity of the spectrum.is much greater. In any case the anharmonicity of the states
with the same angular momentum and the splitting of the H.0. multiplets, much more
important here, can be explained as for A = 16. We see in this figure the relation
between the curvature properties and the splitting of the 3s-2d-1g shell. The same
FAS is represented in Figure 3 by its sections 1 = cte. The semiclassical energies
are given in Table II and compared to the exact quantum results. Unlike the A = 16

case there exist semiclassical bound states with positive energy (n>1). The latter
are a consequence of the attractive pocket of the effective potential and they
constitute a semiclassical way to define a resonance. The energies of these
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semiclassical resonances are compared with the quantum energies calculated as in the
Gamov a-decay theory /9./.

We also remark that it is the linearity of the I% (M) curves which allows one to
define a mean slope, and therefore a mean frequency, for the potential (1). It is
this frequency which one must use to replace, as is usually done, a nuclear average
potential by an H.O0. From a classical point of view this approximation is justified
as far as the frequencies of the classical motion present a weak dispersion with
respect to a constant mean value, at least in the energy interval containing the
eigenvalues. In Fig. 4 we have plotted the classical radial frquencies versus the
energy for different values of L and for the two cases previously treated. The
wg(n) curves shows the energy regions inside of which the H.O. approximation is
classically justified. We see that the weak dispersion condition is far from

being satisfied for A = 208.

In all cases the radial mean frequency w, obtained from the w%(n) curves has
nothing to do with the one which is obtained by a Taylor expansion of the potential
at r = 0.

o tiw, rA:‘é

P
£

b

o4 v
o 1 ?

Fig. 4 — Classical radial frequencies of the potential (1). They are given by
Hw in VO units.

The study we have just exposed for the A = 16 and A = 208 cases has also been
performed for intermediate values of the mass number. The evolution of the EBK
spectrum with this parameter will be given in the next section where we develop a
more straightforward method than the step-by-step one. Let us remark only here
that this evolution ‘is the EAS one. In Fig. 5 we have drawn at the same scale the
whole EAS for the A = 16, A = 90 and A = 208 values. Some of the features of the
spectrum evolution can be understood just by looking at this figure. Thus, the
number of eigenvalues will increase because the EAS is more and more extended, the
splitting of the H.0. multipletswill become more and more important because the
curvature of the EAS increases also with A, the fact that the properties of the
surface does not change in a similar way will produce the level crossings.

Concerning the accuracy of the EBK method in the nuclear potential we have plotted
in Fig. 6 the relative difference between the EBK and the exact eigenvalues versus
the energy for various values of A. This difference is about 1% on the average

but this value is greatly exceeded for the states near the bottom of the well. It
is well known that the semiclassical methods give a result all the better that the
quantum numbers are high and that the size of the system is large (small h). Any-
way in our problem the range of variation of the parameters is not sufficient for
these effects to be predominant., Thus the 3s state is less well approached than the
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4s, just the contrary of what we could expect. Likewise, the relative error in the
1p state increases with A. The only conclusion we can draw for our results is that,
independently of A, there exists two regions in the spectrum inside of which the
quantum EBK differences has a comnstant sign.

Figure 5 : Energy-action surface , E = H (I ,IL),for A = 16,
A = 90 and A = 208. *
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Fig. 6 - Comparison between the quantum and EBK
spectrum for different values of A.




C6-357

This difference which is minimum at the boundary of the two regions (N=0.35) is
practically stationmary at 17 above it and increases exponentially below. It is
therefore the fact that an eigenvalue belongs to one of these regions which will
determine mainly the error.

IV -~ FROM LEAD TO OXYGEN

In order to avoid the repetition of the preceding work for each value of A it would
be very interesting to develop a method allowing us to follow each eigenvalue when
A is changing. The perturbation theory of quantum mechanics is excluded beyond
small variations of A, which is far from being the case. The EBK method seems more
adequate in order to solve such a problem. In its framework we have developed a
technique which allows one to follow a semiclassical eigenvalue continuously as a
function of A, for any domain of variation and with the required precision. The idea
consists in following the quantum tori defined in (5) when A is changing. In other
words suppose that for a given A the particle is at some semiclassical energy Epp.
That means that quantum conditions (5) are fulfilled. Let us change A into A+dA
and the question is : what is the energy variation dE in order to satisfy the same
quantum conditions 7

We can answer this question by considering the radial action for a given angular

momentum, I% , as a function of E and A. If this function satisfy

L (B4 = @+ PH ©)

and if we impose to keep the same value under small variations of its arguments we
obtain the relation

él; BI: B
Gy €+ (59, da=0 (8)

This is the differential equation of the En (A) curves giving the EBK eigenvalues
as a function of A, We can rewrite this equation, in view of (6), in a more useful
way

- - ot@a . Y aa (9
r T OCQAE

It only remains now to know the spectrum of a heavy nucleus in order to get, by in-
tegrating numerically equation (9), the spectrum of the whole chart. This is what
we have done by starting from A = 208. The results are shown in Fig. 7, which was
obtained with an integration step AA = -0.2. We have drawn, together with the
bound states the semiclassical resonances. The energies are given here in MeV by
E=(t-n) . V_.

o

We see, from equation (9}, that the evolution of the EBK spectrum is commanded by a
product of two functions. One of them is the classical frequency represented in
Fig. 4. The other one can be written from equation (4), in the more explicit way

oI __ 1 m v

% e T w P (BA)dr
This function has a constant positive sign which explains us the uniform sloping
down of each energy level in Fig. 7.

We also remark that the crossings of energy levels occur only in the upper part

of the spectrum. There the states with smaller L tend to be at a lower energy. Below
this region the evolution of the spectrum with A occurs in a more regular, quasi
parallel way. We can understand this,through the w«L(n) curves showed in Fig. 4.
Indeed ,when one of the EnL(A) curves approach the values E = 0 (n= 1), the diffe-
rence between the classical frequencies corresponding to two contiguous states is
greater and greater. This difference produces, from (9), a rather different slope in



C6-358 JOURNAL DE PHYSIQUE

the EnL (A) curves and a crossing occurs.
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Fig. 7 - Evolution of the EBK spectrum with the mass number.

In Fig. 8 an enlargement of the encircled part of Fig. 7 1is presented. The semi-
classical energies can be compared to the exact quantum mechanical eigenvalues
(dotted lines). All the crossings predicted by considering the energy action surface
are seen to be produced in quantum mechanics a few units of A away.

vo=52 (MEVY)

Fig. 8 — The encircled re—
gion of Fig. 7 (ful
line) is compared
to the exact quan-
tum results (dotted
lines).
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The precision of the method we have just exposed in following the semiclassical
EBK spectrum depends on the integration step and on the length of the integration
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interval. In table III we have compared the energies obtained with equation (8)

n' SC)'tO the semiclassical values (nSC)for two,not time expensive,integration steps
AA =7- 0.2 and AA = - 1.0.

A =16 A =90 A= 132 A'= 160

(a) () (a) (b) @ @™ (@) ()

1s  201.6 41,0 35.3 7.1 16,4 3.3 8.7 1.8
ip  148.3  29.9  30.6 6.2 14.4 2.9 7.8 1.6
1d 92.1  18.2  27.3 5.5 13.1 2.7 7.2 1.5

2s 54.3 10.6  24.1 4.8 11.8 2.4 6.4 1.3

Table IIT - Relative error between the exact EBK eigenvalues
§C) and those obtained by 1ntegratlng equatlon
. We give the quantity
x 104 for two integration steps : (a)sgA SC) .8?
() HMA =-0.2

The outline of the level spectrum of Fig. 7 has been obtained long time ago by
Green et al. /10/ by solving the SchrSdinger equation with slightly modified poten-
tials. We see that the main features of the spectral evolution can be explained
through the classical properties.

V — CONCLUSION

In this work we have shown, through the example provided by the nuclear average
potential (1), that the EBK semiclassical method can be used not only to obtain
the quantum spectrum with a good approximation but to understand 1ts properties.
They are carried by the energy-action surface which summarizesall the dynamics of
the classical system. The geometrical properties of this surface, on the other
hand, are directly related to the level spacing, ordering and crossings. In this
way we see that the main features of a quantum spectrum appear as being assigned
by the classical properties.

We have also shown that the EBK method seems very appropriate in order to follow
the spectrum of an hamiltonian which depends on one parameter if the classical
system remains integrable.
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