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Résumé - Nous calculons la fonction de la réponse nucléaire semiclassique-
ment. Il s'avd@re que les résultats obtenus pour des impulsions transférées
q= 2 fm~! sont en trds bon accord avec un calcul exact.

Abstract - We calculate the nuclear respomse function in a semiclassic
fashion. It is shown, that the obtained results are for high momentum
transfers ¢ 22 fm * in a very good agreement with an exact calculation.

I -~ INTRODUCTION

Inelastic electron and proton scattering fram nuclei at high momentum transfers nece-
ssitates on the full quantum mechanical level a big numerical effort. Since in the
quasi-elastic peak region shell effects are absent a semiclassical approach may be
sufficient. We will show in this work that this is effectively the case for momen-
tum transfers of q > 2 fm !.

11 - THE THEORY

The free response function v<0)(q,w) for an excitation operator 6 can be calculated
from the particle hole Greens function ﬂ(o)(rl, Iy, rl, r2)

-ﬂ.‘?&m = K(fn c\qdr, clv,_ Qui.,r,_\ “Aﬁ,ﬁ T Qu-';.ﬁj) (1

§) shall be the 1ongitudinalvexcitation operator

U
Q&) = e SE-®) @
In coordlnate representatlon, the Greens function attains the following form:
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where h is the one particle hamiltonian and ) the Fermi energy For the Greens
function we take now a semiclassical approximation. This approximation is achieved
by replacing the operators by their classical counterparts. This Thomas Fermi
like approximation has been very successful in the case of particle hole densities

/1/.

For the longitudinal response function one obtains with
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the local Fermi Gas (F.G.) derived previously in a somewhat different way by kosen-
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This result is valid for arbitrary potentials. If the potential is local, however,
it cancels in the denominator and enters only in the arguments of the step func—
tioms.

For a spherical potential all but one integration can be performed analytically.
For the imaginary part one thus obtains for W>0 :

0 for T o
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where \( (l)* M A VW) is the local Fermi momentum
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The real part can be calculated form eq. (7) by a dispersion relation
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or directly from eq. (6). One obtains
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For a square well potential eq. (7) leads dlrectly to the Lindhard function /3/; for

a harmonic oscillator potential = A * . eq. (7) still can be given ana-
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111 - COMPARISON WITH MICROSCOPIC CALCULATIONS

In fig. | the response function in a harmonic oscillator potential is compared for
two momentum transfers with the exact quantum mechanical ones, calculated by

$. Shlomo /4/. Because the semiclassical method employed is similar to the Strutinsky
smoothing procedure /5/, the exact result had been smeared out by a step function
of range 2 hwg.
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Fig. l: For two momentum transfers the response function in a harmonic oscillation
potential (k, = 1.5 fm~l) is compared to a quantum mechanical calculation

/4/. For orientation the Lindhard functions (nuclear matter kF = 1.36 fm™ ")
are also shown.

The semiclassical method reproduces for momentum transfers q > 0.6 fm 4 the average
values very well. For lower momentum transfers, the local Fermi Gas approximation
fails, because only a few eigenvalues are excited and a local approximation is not
able to account for single eigenstates which are a global property of the system.
Energy integrated quantities may however still be quite accurate as can be deduced
from the fact that the energy weighted sum rule is exactly fullfilled within the lo-
cal F.G. approximation /2/.

In fig. 2 the local F.G. response function calculated for a Woods-S8axon potential
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is compared with the correspondent fully quantum mechanical calculation /6/. The
result has been averaged with a Lorenzian of 3 MeV width.
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Fig. 2: The semiclassical response function in a Woods-Saxon potential compared
with an exact calculation of N.van Giai /6/.

Our results, again, produce a good average in the region where shell effects are
present. In the region where the continuum dominates, the exact result is very well
reproduced. We thus can say that for q > 2fm ' the semiclassical approach is almost
identical with the quantum result. The dependence of the response function on the
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average potential is illustrated in fig. 3. One finds that the nuclear matter

approximation (k, = [.36 fm) is better for heavy nuclei than for lighter omes. Forl,
light nuclei, surface effects are important and a harmonic osclllator(k = 1.5 fm )
response function (eq. (10)) becomes more realistic than the Lindhard funct1on (nu—

clear matter).
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IV ~ THE DELTA RESONANCE

For inelastic proton scattering one can excite besides pure nucleon particle-hole
pairs alsoli-hole pairs in the longitudinal channel /7,8,9/. Thereby a nucleen can be
transformed by a 70 to a delta particle. We again want to study the difference be-
tween a pure nuclear matter calculation and our semiclassical approach. The total
longitudinal free response is given by /7/.

(39}
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Here f (q,w) and £ ‘(q,w) are the plon baryon vertex factors/7/:
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In analogy to (6) one finds /9/:
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with h@s?} \WA * q_m + V\v\) » fiwy is the difference between the Amass (mp)
and, the nucleon mass. The delta width has been neglected.

For a spherical potential this gives
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And for the real part one obtalns. ®
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In fig. 4 the total response function is drawn together with its components. In the
imaginary part (full line) the nuclear and the delta contributions are clearly sepa-
rated in energy. The delta response, however, contributes to the total response
function through its real part (dashed dotted line) even for lower energies, and
modifies the real part of the nucleon response (dashed line). For comparison, the
delta part of the responmse function is also shown for the nuclear matter case
(dotted 1line).

Fig. 4: The total response
function and its components
(dashed: the nucleon part
dashed dotted: for the A
part). The full lines give
the sum of both. The calcu-
lation was done in a Woods-
Saxon potential for 40Ca.
The points indicate the re-
sult for the nuclear matter
case .of the delta part.

IV - RESPONSE FUNCTION INCLUDING PARTICLE-HOLE INTERACTION

The Greens function including interactions is calculated from the tree one by means
of (neglecting the exchange part of the interaction):

=) LR T T T TV Y
TC‘ ) = W@ + &&(‘AQ)\‘,_ W2ty V-8 e, & a7
One can show that to zero order of i one obtains for the response functionm:
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For the special case of a one pion exchange potential (OPEP) plus Midgal parameter,
representing the short~range repulsion,

= o - (hea)”
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m is the pion mass.

the results are represented infig., 5, where g' = 0.6 has been used.
2.4

Fig. 5: The free response
(dash~dotted line) is com~
pared with the response in-
cluding interaction (15)
(full line). The dashed
line representes the res-
ponse where the A contribu-
tion was omitted.
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The particle hole interaction causes a softening of the response function whereas
the A contribution causes an enhancement. We omit here a detailed comparison with
the pure nuclear matter result because we were so far unable to exactly repro-
duce the calculations of ref. /8/. The results presented in Fig. 5 should therefore
at the moment only be considered as qualitative indicating the general trend of the
effects.

In conclusion we can say that we have shown in this work that the semiclassical
approach to the calculation of nuclear response functions works perfectly well for
high momentum transfers (q > 2 fm ') opening thus the possibility of quite precise
and easy calculations even in the case of quite sophisticated linear response theo-:
ries.

Nevertheless some further studies and refinements should be done in future:

i) One should include the first Mi—correction to improve the far tail region of the
cross section.

ii)A comparison of our result (Fig. 5) including residual interaction with an exact
quantum calculation should be performed, though it is our strong belief that the
same degree of accuracy holds in the interacting case as im the non interacting
one.
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