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SEMICLASSICAL CALCULATIONS OF THE IMAGINARY PART OF THE NUCLEON-NUCLEUS
OPTICAL POTENTIAL

R.W. Hasse and P. Schuck®

Institut Laue-Langevin, 38042 Grenoble (Cedex, France
*mstitut des Seiences Nucléaires, 38026 Gremoble Cedex, France

Résumé - On calcule pour des noyaux finis, la partie ‘imaginaire du potentiel
optique noyau-nucléon sur et hors couche utilisant 1'approximation du gaz de
Fermi local et une force d'échange 3 deux corps ayant une portée finie. On
compare les résultats avec ceux obtenus par des calculs pour la matiére
infinie et ceux obtenus soit pour la densité locale soit pour l'approximation
de Glauber.

Abstract — We calculate for finite nuclei the imaginary part of the nucleus-
nucleon optical potential on and off shell by using the local Fermi gas
approximation and a finite range two-body exchange force. Results are
compared with those obtained by infinite nuclear matter calculations as well
as using -the local density or Glauber approximation.

I ~ INTRODUCTION

The imaginary part of the nucleus-nucleon optical potential enters directly in
various quantities of interest in static properties of nuclei or in nuclear reaction
theories, e.g. in the effective mass /1/ and the self energy /2-5/, the nucleon
mean free path /6-~7 /and quasi-particle life times /8/ or in theories of inelastic
scattering. Whereas the optical potential has been often calculated fully micro—
scopically, semiclassical calculations exist only for infinite nuclear matter
/3,9,10/ or finite nuclei with the local density approximation /5/. The latter
approximation- consists of replacing the Fermi energy XA by its local equivalent
gF(R). A review over existing semiclassical calculations is given in ref. /11/.

In this paper we. are concerned with finite nuclei and take the finite size effects
into account exactly with help of an average nuclear potential V(R) which we need
not specify explicitly. Furthermore, we also calculate the off shell behaviour of
the optical potential which has often been assumed to be weak /7/. In order to be
realistic, we employ a finite range exchange potential which forces the optical
potential to decrease at high energies. Results will also be compared with those
obtained by use of the Glauber approximation which neglects the Pauli principle.
Preliminary results have already been presented in refs. /12,13/.

II - THE MODEL

Beyond Hartree~Fock, the first corrections to the mnuclear self energy are given by
core polarization and correlation contributions according to Fig. I.

1 Fig. | — The first three graphs
> ﬁ./.\,—‘b Z———- of the nuclear self energy.
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Written in terms of the mass operator,

) = ha 13 he hy h3 hy 7
Mol =3 2730 - (1
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where 0, n and € are the particle and hole densities and energies, respectively,
and v is the two-body interaction, one sees that the polarization graph contributes
only if the energy w is above the Fermi energy A and the correlation graph only if
w 1s smaller than A. Rewriting the imaginary part of (1) in space representation,
one obtains the nonlocal imaginary part of the optical potential,
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Here p, o and H are the particle and hole density operators and the one particle
Hamiltonian, respectively.

In order to obtain the coordinate and momentum dependent optical potential for a
contact exchange force

Dty a3) = Dl-7)) S(@-7) (A7) (3

we go over to relative and center—of-mass coordinates according to
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and Fourier transform with respect to the c.m. coordinates, s - ;, 5. - ;.. Then
the matrix elements in eq. (2) can be written in semiclassical approXimatlon as
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and, similarly, for p exp(-iHt). This yields
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where O_indicates the same step function in the square bracket but taken at

negative argument. Now the time and relative coordinate integrationscan be performed
to give
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where we have introduced the local Fermi energy and the local Fermi momentum
according to
2
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In eq. (7) finite size effects enter directly in the energy conserving §-function
by the additional local Fermi energy.

For simplicity, we now use a Gaussian force of range r, in coordinate or of range
k in momentum space

2
Bl = v, e~
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3 . > .
Then the integration over x in eq. (7) can be performed. Furthermore, the momentum
conserving &-function suggests to introduce the relative and c.m. momentum transfers
according to

P,=P +3/2 (10)
and to use the angle convention

P = ol +p} (11

Then the § and P, integrations can be performed to yield the final result
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where RO is the turning point at which V(Ro) = A.

I11I - ZERQ RANGE FORCE

Eq. (12) simplifies considerably if the range of the force tends to zero or k- o,
The first line of eq. (12) becomes constant and the second and third lines reduce to

¢ 2pq 0.9 £ pe(R)
W(w) E) l)& 29 _{4&5“7‘? X{P:CR)"(PQ'%)Z .(0 P"*f > Pp(ﬁ)

(13)
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The dependence of W on R here is only contained in the local Fermi energy (8) so
that eq. (13) can be employed for arbitrary potentials. Here and in the following
we normalize W to attain the value 1/4X at w = P = R = 0. Momentum transfers are

limited to
2pRr + Yam(n-wtée (m) WEN
04 P« (14)

0e (R +2 [ om (w-n +ep(m) w2h ,

which provides also a small energy cutoff.

Results for R = O are shown in Figs. | and 2. One observes the well known quadratic
behaviour around w = X which persists even for large P and which is fairly indepen—
dent of P. However, contrary to the claims in refs. /2,8/, contributions from the
polarization and from the correlation graphs are not strictly symmetric. This effect
is strongly pronounced at small P. As a consequence of infinite quasiparticle life-
time at w = A, W{w = A, P, R) must vanish. Finally, one observes that the nonlocal-
ity of W is rather important for all energies except w % i, which calls in question
the often made "innocous assumption' /7/ of a local imaginary part of the optical
potential.

Fig. | = Contour plot of W(w, P, R = 0)
for a zero range force. Energy E and
energy transfer P2/2m are measured in
units of the Fermi energy.

For zero momentum transfer, W(w, P = 0, R = 0) can be calculated analytically

(e = w/A),
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which provides a %

ood check of numerical accuracy. This quantity, together with the
on shell value (P

/2m = w), the P-integrated local equivalent of the nonlocal W,

Fig. 2a and 2b - Same as
e Fig. 1, but three dimen-
ok sional (front and back
03 views).
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and the Glauber approximation are shown in Fig. 3. Here the Glauber result has been
obtained by neglecting the Pauli principle, i.e. dropping the second and third 6-
functions in eq. (7) and neglecting the hole energy Py /2m in the energy conserving

04 T v T T T T Fig. 3 ~ The imaginary part of
the optical potential at R = O
w y = i . N .
@ Local FG. Al Rm“%f for various values of P and in
03l the Glauber approximation.
Glavber .o
appro
02 1
P=0,0n shell
Ve
&}ﬂwﬂ
o1 ;
(4] 1
o -3 2 -1 ) 1 2 w3

S—-function. One sees that the local equivalent and P = O values are rather similar
for positive energies but that the on shell value differs drastically for large
energies. The Glauber approximation lies always above by virtue of the additional
phase space gained by neglecting the Pauli principle.

In turning to finite size effects, W can be calculated analytically on shell,
w = P%/2m + V(R),

(0 0&tsA-€cCR)
& (ptew - 2)° A-S¢CR) £LE N
Wiw,es.,R) & < %(2(2(2)-22)%/2 +%¢CP-)E —%PFS—GZ)/B NEWE A oEeCR) (16)
L i6me -Eem/e A+€cCp) e .

The dependence on P2 here is exactly the same as in infinite nuclear matter /2,10/
but with A replaced by the local ¢_(R). However, eq. (16) is not strictly the same
result as one would employ the local density approximation, i.e. replacing A by
e_(R) everywhere since the regions of validity of the different branches do depend
onh the absolute Fermi energy A as well,

o ' ! ' ' ) Fig. &4 - The imaginary part of
W (w) Nonlocal E G. the on shell optical potential
On shell for different values of the
o3l local Fermi energy.
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Fig. 4 shows the dependence of W on £_(R) or, in other words, on the radius R. The
upper curve then corresponds to the nuclear interior and the lower omes to the
surface. In assuming for instance a Woods-Saxon potential, for fixed energy, W is
almost constant in ‘the interior and falls off sharply at the surface. The local
density approximation, on the contrary, would yield curves shifted to the left and,
thus, violating the basic feature of W(w = A, P, R) =

IV ~ FINITE RANGE FORCE

Gaussian two-body effective interactions have typical ranges of 2.25 fm /14/, i.e.
k /k, = 0.625, We therefore solved eq. (12) numerically for various ranges. The
Gaussian exp (-2q /koz) cuts off effectively the high momentum transfer contrlbu—
tions and, hence, forces W to decrease at high energy as shown in W(w, o.s., = 0)
of Fig. 5. The strength of the force, here again, has been adjusted to attain

04 —— 7 Y T r
W(w) Finite range Fig. 5 - Imaginary part of the
Local £. G optical potential on shell at
- = 0 for various ranges k /k
03 On shell

of the two-body effective
Gaussian interaction.

o]

[o] 1 2 W/ 3

Ww =0, P=0, R=0) = 1/4 XA, The larger the range, i.e. the smaller k is, the
more concentrated is W around small energies.

For finite radii, W now depends also on the nuclear mass number via R_ in the R'-
integration. Fig. 6 therefore shows W(w, o.s., R) for a *0Cca harmonic’oscillator
and ko/kF = 0.625 at various eF(R). A comparison with the zero range equivalent,

o4 T i T ! ! Fig..6 - Imaginary part of the
W(R.w) Finite range on shell optical potential for
Nonlocal F G. Ca and various local Fermi
| On shell | energies.
ko/kg=0625
1 1/2Nwo/r=0154
02} E

V4w
08|06 |04 02
0 1 2 wfy 3

Fig. 4, shows again the decrease of the optical potential in the surface and a
concentration near small positive and negative energies.

Finally, we compare our exact calculations for finite range with those obtained
by use of the Glauber approximation in Fig. 7. Here again, the additional false
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10 T T T T T Fig. 7 - Imaginary part of the on shell
W(w) Local F.G. optical potential at R = O and range
On shell ,f"}kﬂ10 ko/kF = 0.625 compared with the Glauber

approximation.

Finite range

phase space gained by the neglection of the Pauli principle enhances W roughly by a
constant amount for all energies.

V. SUMMARY AND OUTLOOK

We have applied semiclassical methods for the calculation of the imaginary part of
the optical potential W(w, P, R). Finite size effects have been incorporated by
means of the nonlocal Fermi gas approximation and a finite range effective inter-—
action. As results we found that the finite range of the force is responsible for
the fall off of W at high energies; that the nonlocality of W is strongly pronounced
especially for small P; that the Glauber approximation yields values of W always too
high by about a constant amount and that the strict local density approximation only
roughly simulates finite size effects.

Further studies on this subject will be devoted to the calculations of the real part
of the optical potential via subtracted dispersion relations, thus obtaining e.g.
the correction to the Hartree-Fock potential and realistic level densities around
the Fermi energy, effective masses and momentum distributions.
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