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CRITICAL ANALYSIS OF SOME CRITICISMS OF THE DROPLET MODEL

H. Krivine

Division de Physique Théorique®, Institut de Physique Nucléaire,
BP 1, 91406 Orsay Cedex, France

Résumé - Nous montrons que dans un systéme nucléaire semi infini la formule

du modele de la gouttelette liquide reliant la tension de symétrie de surface
d la peau de neutron est nécessairement vérifiée, pourvu q'il existe une
densité d'hamiltonien dépendant seulement des densités (et de leurs dérivées).
On effectue ensuite un calcul auto-cohérent dans une plaque. Nous faisons
finalement quelques remarques pour Te cas des noyaux finis.

Abstract ~ We prove that in the semi infinite nuclear system the droplet model
formuTa relating the surface symmetry tension to the neutron skin is satisfied
provided there exists an hamiltonian density involving only the densities and
its derivatives . We make a fully self consistent calculatieon in a slab. We
finally make some comments about the case of finite nuclei.

T - INTRODUCTION

As well known, the knowledge of the surface symmetry energy E.. is relevant for the
calculation of fission barriers, heavy ion collisions, but alse for understanding
the strength distribution shape of T=1 resonances. It is also relevant for some
astrophysics equilibrium calculations

Unfortunately, Eqg remains rather undetermined both from experimental data as from
theoretical calculations based on microscopic interactions. One of the major inte-
rests of the Droplet Model Theory (D.M.)/1/ from this point of view is to relate
simply the surface symmetry tension O (4nr0208:=Ess, where ry is the nuclear

matter radius) to the neutron skin t.(t is a geometrical quantity related -but not
directly — to the difference between the neutron and proton rms). This relation can
be written in a nucleus
=1 t
% = 3 % 3 (1)
J is the symmetry_energy of the nuclear matter with the density p,,, in the absence
of Coulomb force,§ is the value at the center of the local asymmetry &

s -0
Pn* Pp
In the semi infinite matter, s=1 (the usual n-p asymmetry coefficient).

The proof of this relation given by Myers and Swiatecki is rather subtle. This is
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perhaps why it was never criticized on theoretical grounds ; however some numerical
results have been found, which contradict the D.M. theory in this respect /2/. In
this work, we will first concentrate on another derivation of the formula (1) in a
simple case (semi-infinite nuclear matter or slab, no Coulomb energy). We will prove
that the original result is rigorously exact under the two -rather general- assump-
tions

i) the nuclear forces are saturating

ii) the energy of a fermion system in mutual interaction can be described by an
Hamiltonian density ¥C depending only upon the diagonal one-body density matrix.

In the first part of this work, we derive and analyze eq.(1). In the subsequent
section we give an example of calculation of o5. Finally we discuss some problems
occuring when one takes the case of the finite nuclei.

II - DERIVATION OF THE D.M. FQRMULA

The main difficulty to follow the original demonstration of Myers and Swiatecki Tlies
in the fact that their starting point is a finite system with A nucleons (Ceoulomb)

force included), while the final formulae deal only with properties of semi-infinite
system. As a result, they often deal with quantities that remain finite, as products

of factors going to zero like |1 -9 1 and to infinity with the surface of the
nucleus. Therefore we think that it is simpler to consider the case of the slab of
nuclear matter, avoiding any limiting case.

II - 1. Background and notation

One writes
a=on-pp=pé
and one supposes the matter "on the left"
1
p.(~®) = Zp (1+1I)
n nm
2 (3)
o, (~@) = o (1-1)
p 2 Tnm

Though the sharp equivalent radii Ry and R, are meaningless, their difference,
which is the neutron skin, t, is finite and defined by

t=R -R { P % |4 4
Son o p [p(-w)'o(-@ * (4)
Jon P

Using then eq.(3) one gets to order 12
zIHa }
t = Lo =-p ldx . (5)
pnm I

Let us now split the Hamiltonian density into its isoscalar and isovector part
H=H +¥&
P o

The isospin symmetry allows to expand Jfa

Ka=&m,v

o) at+® (p, €p..) v 12 +.. (6)

(For the sake of simplicity we restrict ourselves to the first two terms of the
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expansion although the next terms which contain higher order derivatives would not
alter the following demonstration).

11 ~2. Proof

In the absence of any constraint, the proton and neutron densities are identical. To
get an asymmetry one had to impose

J (3o ]or = "

The constraint (7) implies that the local asymptotic asymmetry “"on the left” is
equal to a fixed number I. Eq.(7) is, in a one dimensional space, the counter part
of the 3 dimensional constraint

J (3-0]er = ©

{which simply means that Nz -A=0). Egs.(5) and (7) show that imposing an asymme-

try I in the semi infinite Auclear matter is equivalent to fixing the value of the
neutron skin (over I). Denoting by ( E )o the energy per particle in the asymmetri-

cal nuclear matter and(%)nm the corresponding quantity when I =0, we have

E, _ ,E L2

(51 = (5018, (9)
At equilibrium, the quantity

1 - [t (E)ge -u(g-0) Tax (10)

must be stationary against any variation of p ando . With respect to o the Euler
Lagrange equation gives (see eq.(6))

280 - 26 'a' - 2" = 115 (11)

Since u is a constant, it can be evaluated for x=-wm, where o'=a" =0, a= Ipnm
and

.22 2
¥ (-0) =T%p & (-w0) =1 dp
so that we have
wo= 2318, (12)

On the other hand, the surface tension o of the slab is defined by :
_ E
o= [tr - (5 00 ax (13)

It should be noted that the difference between the surface tension ¢ (eq.(13)) and

L(I) (eq.(10)) is
o- (D)

N

2012 f(%-p)dx (14a)

= Jltp, (14b)

This corresponds to the tension due to the constraint. We are now on a position to
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prove relation (1). In the semi infinite system, Eq.(1) reads

2
1da 1 t
OS-ZdIZU—ZJpnm_. (15)

Since up to terms of order 12, % is I-independent, the hamiltonian
2 2
=g, 412 (b &8 1Vl

can be differentiated with respect to I and £q.(15) is transformed into

ra
2

£ Quz lva|2
o J[H-(A%p]dx=fﬁ ﬁ+& ) -Jp) dx (16)

I
Retugning now to the Euler Lagrange equation (11) where we replace u by its value,

2J1%, at equilibrium, we multiply both sides by o, subtract 2I1Jp and integrate
by parts to obtain

=1
o5 = >

I2 2 2

2[(&a2+&|§u - 1%0p)dx = 2J1 J(%-p)dx

This relation together with Eq.(16) proves the D.M. relation (15).

We now make some comments on the above derivation. The second derivative of both
sides of the Eq.(14a) gives (using Eq.(15))

2
4z
= g - 20, = =0 (17)
8 8 8
d1?

N b=

Eq.(17) shows that the symmetry energy per unit area taking into account the energy
due to the constraint is exactly opposed to the symmetry surface tension og (which
is >0). This is so because the symmetry tension due to the constraint is exactly
equal to -20g5 . The factor 2 is not accidental, but related to the quadratic depen-
dence of ¥ on «o.

When dealing with a mass formula for finite nuclei, the surface symmetry coefficient

2 -

€qs (i.e., the coefficient of I 3 in the expansion of % ) must be calculated

43
d?
energy (>0) and the Toss of energy due to the reshaping of the densities responsi-
ble of the formation of a neutron skin (or eguivalently, in finite nuclei, because

of the conservation of N-Z, a decreasing of &(r) in the bulk of the nucleus from I

to §). Since a«=p8, Eq.(15) may be written

from

N et

. It is negative as a result of the balance between the surface symmetry

o = [(?-l)pdx (18)

and appears as the symmetry energy of nuclear matter per unit area weighted by the
average of the excess of local asymmetry (% - 1)p. Clearly any approximation which

ignores the neutron skin (1ike the standard one : pn==Np s P =§;3) is meaningless

for such calculations. In a previous work /3/ we have derived the approximate rela-
tion

o5 = 2 I[J-as(p)]pdx (19)
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where eg(p) represents the volume part of Jgﬁ (i.e., the part independent of the

derivatives with respect to a). In Eq.(19) o4 also appears as an average over the
surface region of the defect of symmetry energy relative to the volume symmetry ener-
gy. It should be stressed that formula (19) is only a rough approximation ; its
advantage as compared to the exact relation (18) is that it does not require the
knowledge of the equilibrium densities in the asymmetrical slab. We now show how s
in Eq.(18) can be evaluated.

IIT - CALCULATION OF THE SURFACE SYMMETRY TENSION

IIT - 1. Method

We construct our density hamiltonian ¥ using Skyrme forces and some crude variant
of the Extended Thomas Fermi (ETF) approximation ; the kinetic energy densities t
are approximated as follows : q

2
3/2 [ Vol
/2 513, 1 g 1

3,,2
= = (3 —il - + A =1,
T 5( ) 18 B 3 %°q q=n,p
We then solve numerically the two coupled Euler Lagrange equations(in °n and pp),
using a pseudo linearization method analog to that used in ref./4/.

IIT - 2. Results

The results are illustrated in Fig. 1. We have calculated o, using 3 different me-
thods. The points correspond to the guantity EK—)———i-) » the crosses to ———lQlEL—)

and the squares indicate the valueszof s obta1neé via the DM calculation (15). 12
The three extrapolated values for I“-0 aoree within 1%. Obviously the calculation
using the neutron skin is much more accurate. It only requires a first order deriva-
tive.

bl
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Fig. 1 - Calculation of the surface symmetry tension

Performing such a calculation for various Skyrme forces, we obtained the results of
Table 1.

x

SIT | SIIT | SIV | SV | SVI |Ska | SkM |SkM

~ € [ MeV] 59.4135.5 [67.3195.6 |27.9 {75.8 }56.4 | 55.3

Table 1 - Surface symmetry coefficient for various Skyrme forces (Spin-Orbit force is
included).
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IV - THE CASE FOR FINITE NUCLEI

From the theoretical point of view two problems arise i) as already exp]a1ned the
existence of the neutron skin will induce a decrease of the local asymmetry, 6, at
the center (8<I) ; 1) since the Coulomb force does not saturate, it can only be
treated perturbatively. Indeed the densities though smooth or smoothed are not
decreasing functions of r, and the sharp equivalent radii cannot any more be calcu-
lated from pq(o).

In the absence of the Coulomb force, using a demonstration similar to the previous
one, we have shown that

T 1
) (20)
1+ 47—
A g-Le

where R is the equivalent sharp radius, A the mass number and Le a small correction
to J because the density at the center is no more o but o, = pyp(l-3¢).

o)
(L= 3P0m -—7%;—— }. Eq.(20) is the D.M. formula in the finite case, but its deriva-
tion was not so straightforward as in the semi infinite case. Somehow one has now
i) to introduce the fact that b/R is a small quantity as compargd to 1 (b is the
surface thickness), 1ii) to neglect p"(0) compared to p(0)/ R~ , iii) to write
the symmetry energy of the finite nucleus

1 a2 & R

= (J-Le +4m __,o (21)
2 412 A 12 A

s )

The knowledge of -% gives directly t because of the conservation of N-Z

2
3

—

t= (1-

1 10|

1/3
) ro A

Table 2 displays our preliminary results with a self consistent calculation done as
in the previous case but for a finite mass number

A ® 450 208
K
s : 8
(25 1 86 3
(%) 1 .85 .80
I sc
( % Yy L] .95 .82 .79
( % Jgo L] .95 .88 .93

Table 2 - Comparison between (D.M.) predictions and self-consistent
calculation.
The subscript (DM) indicates the predictions of the D.M.,
(sc) the result of the self consistent calculation. 1

We observe a growing disagreement between DM and sc calculations as A 3 increases.
Obviously a small error on induces a larger one on % (see Eq.(22))
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=
— e+
—{ O

- (22)
1-

— ot

1/3 becomes Targer, the relation (20) is better
satisfied, but the numerical verification is more delicate. We leave for a further

work the point whether or not this disagreement is indicative of a default of the
D.M. theory.

because 1-%— is small. Indeed, as A

V -~ CONCLUDING REMARKS

1. In the semi infinite medium, the validity of the D.M. concerning the neutron
skin is proved in the framework of very general conditions.

2. A clear distinction must be made between the surface tension of the system as a
whole (i.e., with the constraint insuring its asymmetry) and the tension of the
surface itself.

3. The proof of the corresponding formula in the finite case, even without Coulomb
force, seems to require some additional hypothesis.

4. The derivation of the sharp radii is not straightforward at all : one has to
smoath it and to treat properly the Coulomb effect. This cannot be done simply by
using the "best Fermi" function /5/.

Indeed, the D.M. Model is a theory and as such cannot be seriously disregarded
without theoretical criticism. Whether this is,or not, the case remains so far unclear forus.
But it is the only way to learn something.
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