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CURRENTS IN SUPERFLUID ROTATING NUCLEI
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Institut des Sciences Nucléaires, 38026 Grenoble Cedex, France
*Los Alamos National Laboratory, Los Alamos, New Mexico 87545,
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Résumé - Les effets de corrélation sont inclus dans le calcul des cou-
rants dans un noyau tournant par 1l'intermédiaire de la densité & une
particule. La correction & la densité due au potentiel tournant peut &tre
divisée en deux parties : la premiére ne dépend que du champ de pairing
constant A mais donne un champ de courant nul dans le laboratoire pour
les grandes valeurs de A . La deuxiéme partie dépend de la réaction de A
au potentiel tournant et donne, comme attendu, un courant irrotationnel.

Abstract - The pairing effects are included in the calculation of the
currents in a rotating nucleus by means of the single particle density.
The correction to the density due to the rotating field may be shared

into two parts :the first one depends only on the constant pairing field
A but leads to no current in the laboratory frame for high A values. The
second part depends on the reaction of the pairing field to the rotation-
nal field and leads to the expected irrotationnal current flow.

I - INTRODUCTION

The importance of pairing correlations has been pointed out in the calculation of
the moments of inertia for collective rotations.

It is well known that the Inglis cranking formula gives a value very close to the
rigid body moment of inertia and thus about twice the experimental value. On the
other hand, the value for an irrotatiomal fluid is too small (J ..ot < J exp 1)
<J Inglis)- The introduction of superfluidity in the Inglis formula by Belyaev
made it possible to correct the previous cranking results and to approach the expe-
rimental values . Thus, it is clear that the pairing correlations are necessary
to account for the moment inertia:

J - <P>>
- w (1)
for a nucleus rotating with the angular velocity w around the x-axis.
The moment of inertia being a mean value, the conclusion is that the pairing corre-

lations must be included in the density matrix p.
Since the current in a rotating nucleus is

ad —

=5 *
with the same density p as for the moment of inertia, the usual currents must be
corrected by the pairing effects as well. In fact, J and j are not independent

e d 3 bond ( T
J. B o7 tams® RPN (3)
w'L
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and the dependance of J on the pairing field is correlated to the dependance of 3’
on the same field.

The aim of this work is to evaluate the pairing correlation effects on the flow pat-
terns in a semiclassical way, and for a rotating anisotropic harmonic oscillator.
For such a potential it has been shown that, without pairing : )

-~ quantum mechanical calculations exhibit vortices in the flow

- on the contrary, semiclassical calculations give a very smooth flow, looking like
a rigid body rotation

at the 1limit of very heavy nuclei (A-5e0) the flow tends towards a rigid body ore
in agreement with the semiclassical results 3). Thus, in semiclassical calculations
including pairing, no other shell effects may occur and the occurence of any vorti-
ces will just be due to the superfluidity of the system and not to any other quantal
effect. The semiclassical method turns out to be a good tool to investigate the
pairing correlation effects.

IT - CONTRIBUTION OF THE PAIRING FIELD TO THE ONE BODY NORMAL DENSITY OF A ROTATING
NUCLEUS.

Following on from Migdal 6), for a system of quasiparticles described by the Hamilto
nian ¥ =H +:V, where V is a weak perturbation, with

H(f?‘=e}‘(‘?)\

5)\ =e,_ }LF 'rlF = Fermi energy
N =\‘Ef+ A usual quasi-particle energy
A = constant same pairing field for all states
the density is given by :
Ey-¢ '
Yn‘z ; £ - Sf\w * Yx\'
2 £

’ . . . .
where the second term OAA' is the correction due to the perturbative potential

! # i +*
S)\xz (Ex €0 ~EaBu)WVay- A Viys LA BB €y ¢V %)

TEEu(Ey 4 Ex) LEVEV(E W Ey)

1) {2
- fan ¥ §an

- (12 is the change due to the perturbation without any change in the pairing
fie%é : it is the usual Belyaev contribution

- A}, 1s the change in the pairing field due to its reaction to the perturbative
potential V and then o is the corresponding response of the density. Ajy,
obeys the following equation

$ * 2 2 N * )

L 2A{EN M E N )+ 28 AL [ -\—(5,\-&;:)2313"“, © (?\L{’;(‘?’:O (5)
U A !

AN EyEy(EgvEn)

In the case of a nucleus rotating slowly around the x-axis, with the angular veloci-
ty w , the perturbative potential is

Y :-—-L‘UQ:& = _N*
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( ZX = x-component of the angular momentum) in the nucleus-.fixed system of coordi-
nates.
V being purely imaginary and proportiomnal to w , the reactiom A' to this potential

may be written :
AT =rw 2(73) 6)
Eqs (4) and (3) now read :
. 2
cw BEw-&& -0 .
S),w - Py
Q/E,\EAI (E,\+ E,\')
2) .
§ =“”Aii‘$”*£, (7.2)
AN 2ELEy[Exs Ed') Aad
(8

L 2A‘h Q,\}J -\-{}\)\’ (é(\ ée\') (rlv‘)(? {'t) =0

Ak ELEV(Exne Ear)

% is omitted because there is no possible confusion)
&'?\.\_ Ek’ - O

(the subscript x in
has a sharp maximum at

= -4
The function [Ey B ( Ea+ Exi) ]
for a fixed value of ( Ey-&0) and, according to Migdal 6);

_ A
E.Ey(E.Ey ~ A £ - & .
L ara kA r\)l _A.z C“ AZA )S(é(ﬁé(\)
E,Ear- ExEa-A? 1 Ea- €
JEar- E0Es - [ _%L AZAA ]5 £+ E) ©

ZELEL(E A+ EAY)

with :
<-4
g0 = kT (00
N
‘X\l'\+17'

The set of equations for p' is now :

W ﬂ‘ - ] Cx+ el 0
~Now [1_%(2’:‘\ i SI,VF' Srl) (10)

gn' M
NEVEE RV 9 ) IS

' 24 /
L [hba g (e g acan il en)® 39 a0
wooze e j ¢ (11

III - SEMICLASSICAL SOLUTION FOR A HARMONIC OSCILLATOR

The Wigner transform of the one-body normal demsity ¢ (r,p) can be given from
(10-11) with the help of the moment of inertia :

3=i<ex7 :_j_T'r,(g’?)

eqs.

because in the Wigner—space the trace is
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Te AB=|&TET ARH BED (12)
(zmhy®

for the product of two single-particle operators A and B. Taking into account the
spins by the factor 2, the moment of inertia is given by :

: 3 - -

J=2 v di (243 G2 (13)
@ (zwRY *

To perform the change of representation for [ YM' E— g(?,?) , the Pourier

transform of g and § in eqs (10-11) may be used :

(e 0 [ arefi ] g2
%( FA ) 7z Jk.- E[ ZA ] % )
(14)
é( ‘ex"e,\') - 1 S 4t 9.1:\)_&'(}1 _ e,\+e(\z‘t
)’(F 2 \lz—‘“‘{ . [ I F 9 ]

It is easy to show that the first term in p )Ef) , which does not depend on the
pairing field A ,gives exactly the rigid boéy contribution to the moment of iner-
tia and does not contribute to the current (no classical current in the inner frame
of a rigid body). Hence, omitting this first term in the following :

(1) Al ihé WHE JHT o owT -Lﬂ%
Y = ak d’r%me Bogale 2R g 2] o By ARy,
/] *
AN :ml?
'— oD -0
In the Wigner-space, and to the order zero in h, with H\'j = Hclassic :
W Foo (TP it
S’ (“‘,F)N-.LJ d | 4 %(’C)e b ('T)A?(‘C)] (15)
. ik x
with ] AN
R PR XS
F(T) = ¢ » 2% F(oy e © 28 (16)

for any function F. N

The integration over t is easily performed, but knowledge of the trajectory r (%)
and then of the nuclear potential is necessary for the integration over T . Procee—
ding in the same way for pM(\,Z) and f)\X leads to :

f ‘??H L w j 4T c’jm) JZX(T) S(,VF“Hd) A7)
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?A \z,F),_ o Swdf %[T) E(‘c) 3|}4F- ) (18)

4% o) & ¢ [ s %{m §(h Mg} =0 (19
9 : —|¥lpe-a
{awh)y 14 LA

The present method may be applied to a harmonic oscillator, axially symetrical
around the z-axis :

) 2 2
DIT) = e [0 oxy 0 e?
2 L TR R
The trajectories are mow, for each component (i =

X,y,Z)

TATY = N e RTYy . P avify BT )

2n il
IR SC O BTy Cmw ey A (s, BE )
O 24

which gives Q,(T) , leading to :

2 w*a_ - k)‘(é* ‘3«»
(7,7 s -w T W * §{u. %) (20)
f ( Py L ") e

where Wy =W Rz

kai‘m.h and C\Xt :%(2;)

For the second term giz)
shown that

it is necessary to know the function f and Migdal has
(D) = T

E:

is a solution of (19) definmg :

+~
o{:_ZA"‘ww_ %*3

z 2
Wy W a.
then (3* %

iRpeg [ b

2m  §

L)*%

Py 3?3] p -ta) (21)

Any mean-value can now be calculated from the Wigner transform Yl‘t."J g l‘.f'\ +? l",F)
of the density.

IV - SUPERFLUID CURRENTS IN AN ANISOTROPIC OSCILLATOR

In the body-fixed system of coordinates, the contribution to the current of the
pairing field is :
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.77“(_7\ 7;7(::) 7 d}\;) \;, [ “:;’ _7) 121, 4)} (22)
T = — + T
3 +:\ e f P P

(the factor 2 takes the spins into account)
With :

i d} - 7
2 P '\’), (S(u Mg ) = om f
(2uk)> if TF
2 £ /2

- A Zm
?TT’ AR ( -\,‘7-)

one finally finds

0 0
3 Yt b s ;f) -we O (9,49-) g, 0g- gy
i i
2y NCTEE
- ng G- Fug §m§:w _”*Q‘(3*+3') Gedm9g-
Zuy w 9t w}«g- oy

for neutrons and protons separately.
Figure 1 shows the two limiting cases
- the rigid body. The current in the laboratory frame is :
e = 0 QBAT = {0, -wpn , Leny)
gl = % B B TR
and there is mo current in the inner frame :
rd —- >

ﬁcn = gQaL - ? wat =0

- the irrotationnal flow :

Eimc = "%’(T‘QQB) = (oi-“&'t}) ,._Xta)

where Yy is defined from the deformation

10 [

8e [

6s [

26 [
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If the pairing potential vanishes, g, O and, as already seen, the system behaves
like a rigid body (which is the exact result of the Inglis cranking formula for a
harmonic oscillator).

If the pairing potential greatly increases, gy -+ 1 and

- -

)

=[0; (. 2 8- “6)% ‘a' A2l

u\j—{»\ub

u,s)w'z 1

PES

(A +l~7‘

or

22
e 2 by
L’A )J.h“}m: 2 %L ~— {0 ‘b_‘% ;_'L\a)
uﬁ*mb

and the flow is irrotational in the laboratory frame. This is in agreement with
the value for the moment of inertia (Fig. 2). The asymptotic behaviour of J

(which goes to zero if only the usual Belyaev term is taken into account) IS:lirrot
with the help of p(2)(eq. 21).

~ A68F

° 2 4 6 s A MeV)

Fig. 2

Some flow patterns are drawn for different values of the pairing potential A
and for the nucleus *"*%gy with

fiw = 1 MeV
H W, = 41 A‘”3 MeV
o - €
ﬁwx—ﬁwy fo, (145 )
2
how, =T (1= —3)
€ = 0.272

The solid line represents an ellipse, with deformation € with respect to a
sphere R = 1.2 A1/3
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Figures3 show the evolution of the intrinsic current ;(2& due to the change in the
pairing field in the body-fixed system : it changes clearly from a rigid body flow
to an irrotationnal fluid flow. N

The flow pattern for jLA and jE%Q are always very different, as shown in
comparing figures 3 and 4. For low A values, the two currents flow in oppogite
ways, and for the highest A value they have different physical meanings : j

is typically an irrotationnal fluid gqurrent and j t is a rigid body rotation
with velocity (- w). That means that j(1) alone would correspond to a case of no
matter movement in the laboratory frame, although the potential is rotating. The
total current jc£1) R P is shown on fig. 5. -

The net effect of the two correctioms is a current jj,, in the laboratory frame
(fig. 6) which evolves from a typica% rigid body pattern to an irrotationnal fluid
pattern, following the evolution of Ju? ;§Thus, the introduction of the change A’
of the pairing field by means of current ] is essential to reproduce the irro-
tationnal behaviour of a nucleus for large pairing fields.
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