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Résumé — Nous présentons une revue de nos travaux récents sur
les vibrations des super-réseaux infinis ou semi-infinis. En
utilisant soit la théorie de 1'élasticité&, soit un modéle
atomique simple, nous obtenons des relations explic¢ites pour
la dispersion des bandes de volume et des modes de surface.

Abstract - We present a review of our recent theoretical work
on the vibrations of an infinite or a semi-infinite super-
lattice. Explicit expressions are obtained for the disper-
sion of the bulk bands and of the surface modes, on the basis
of elasticity theory or a simple atomic model.

I. INTRODUCTION

Despite a great deal of theoretical study on the acoustic waves in

layered medialll, there is a renewal of activity in this field with
the development of technigques for depositing overlayers on a substrate
and fabricating artificial crystals - superlattices (SL). Infra-

red!2+3! and raman(3:%] spectroscopy has been used in semiconductor
SL to obtain the frequencies of the few first folded phonons around

the wave vector k = 0 - and very recently their dispersion[S] ~ as
well as the freqguencies of phonons in the optical range. On the other

hand, Brillouin scattefing[6'4] can detect the Rayleigh wave at the
surface of a SL. These
experiments yield information

-hg — surface about the parameters of the films
° A that constitute the SL and their
h i Cell n=i quality.
-h+D ———-A
! The surface waves on a SL
~h+(n-2)D T . - have also been studied numeri-
he(0-2) 0 —pgt—1P ” Cell -t callyl7+8]  showing in particular
~h+{n-1)D 12 2 the possibility of elastic
h+tn-1)D _ Celtn horizontal shear wavesl’!. 1In
-h+nD A this paper, we review our recent
. A Celtnsl Fhegrgtical work on v%byations in
—h+n+1)D Y — infinite and semi-infinite SL
: which have the advantage of
E giving explicit relations
s governing the digpersion of the
Fig. 1 modes, In the first part, each

film in the SL is treated as an
elastic medium characterized by
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its elastic constants and its density[g‘lll; the dispersion relations
are derived by means of a transfer matrix method. The second part is
devoted to a simple atomic model for which the Green's function can be

obtained analytically.llz] Further developments will be outlined in
each Section.

2. Elastic Model

The geometry of a semi-infinite superlattice is depicted in Figure 1.
Within the nth unit cell, the eguations of motion in the medium &, for
example, yield the following displacement field

iR, X -wt)
u§n)(§,t) 2 [A(n)exp(ajxgn)) + Big)exp(—ajxgn))]e e . 8]

w is the frequency and ﬁu the wave vector parallel to the interfaces.

(n) _ 4

The reduced coordinate X3 -~ (n-1)D is introduced for conven-

3
ience and ranges from -h to +h. The parameters o«. are the solutions
] A (™)
1]
{or B(?)) are the eigenvectors of the corresponding matrix. There are

of a secular determinant of rank 3 while the coefficients

consequently six unknown multiplicative constants, let us say

A{?), {§) (j = 1, 2, 3) which have to be determined by using the
boundary conditions on the displacements and on the stresses at the
different interfaces. By writing these six coefficients as a column
vector [¢n>, the boundary conditions easily give

l¢n+1> = T|¢n>r (2)
where T is a 6 x 6 transfer matrix. For an infinite SL, the
application of the Bloch theorem in the x,-direction, with a wave
vector kg, gives the eigenvalues as solutions of the determinantal
equations
R ik3D¢
det(T - e I) =0, {3)

where T is the 6 x 6 unit matrix. For given w and K this equation

n
gives six roots for k3, associated two by two, corresponding to

propagation in the positive or negative x3—direction. In a bulk band

these solutions are real while in a gap they have an imaginary part.
For a semi-infinite SL, a surface mode has to be sought in the gaps,
in the form of a linear combination of three out of the six above
solutions, i.e. those corresponding to the attenuation of the wave far
from the surface

(n) 2 _3
u, o (x,8) = Y R

(n) (n) (p)
p=l "5 » By

exp(ajx3

3
Z [a (n)(u) exp(-ajxén))] x

1(k -x —wt)
X e (4)
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Ru (w=1, 2, 3) are arbitrary coefficients introduced to make a

linear combination of the three possible solutions. Finally, a
surface mode solution must fulfill the vanishing of the stresses at
the free surface of the SL. This leads to three linear homogeneous
equations in the coefficients R , whose determinant has the frequen-
cies of the surface modes as it¥ roots.

The above theory has been applied under the assumption that the media
A and A' are isotropic, in which case the shear horizontal“modes
decouple from those polarized in the sagittal plane. The T matrix
becomes a juxtaposition of a 2 x 2 and a 4 x 4 matrix. Moreover, we
showed[11] that the eigenvalue problem for this last matrix can be
solved analytically by introducing the matrix M = % (t + 1) when the
displacements (Egs. (1) and (4)) are expressed in terms of coshajxén)
and sinhajxén) rather than in terms of exponentials. Indeed, the

matrix M can be block-diagonalized into two 2 x 2 submatrices.

As an illustration, Fig. 2 gives the shear horizontal bulk bands and
surface modes in the case that the two films A and A' have the same
thickness, the same value of Cyqr and a density ratio

p (ARAs) /p (GaAs) = 0.7. Fig. 3 presents the sagittal modes of
an AL-W superlattice (these are two nearly isotropic media, with very
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Fig. 2 Pig. 3

different parameters which give rise to large gaps between the bulk
bands). Let us stress that the surface modes are very dependent on
the nature of the film at the surface and on its thickness, which may
be different from that of the corresponding film in the bulk.

Finally, for shear horizontal waves, we point out the calculation of

the Green's function[lo] which makes possible the analysis of
Brillouin scattering from such waves, for example.

This calculation can easily be extended to hexagonal crystals with
(0001) interfaces, where the shear-sagittal decoupling remains valid,
and also numerically to cubic crystals. Moreover, a similar formal
treatment can be applied to a liquid SL ~ following a theory of liquid
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surfaces and interfaces[13] - taking into account the interface or
surface tensions of the liguids and gravitation. These effects lead
to new bands with respect to the solid case.

Finally, we mention our interest in the surface properties of a SL cut
perpendicular to the laminations.

3. Atomic Model

Elasticity theory could fail to be valid if the films in the SL are

composed of just a few atomic layers. We investigated[12] a model of
a superlattice made from simple cubic crystals with interactions
between nearest neighbors such that the three phonon branches are
decoupled (Montroll-Potts model). The interfaces between the films
are (001) planes. For this model, we were able to obtain the Green's
function of an infinite or a semi-infinite SL analytically, from a
knowledge of the bulk Green's function for an infinite crystal and
through the following steps: (i) cut an infinite crystal along two
(001) surfaces to make a thin film, (ii) link together succesive
alternate films to obtain an infinite SL; (iii) cut this SL into two
semi-infinite ones. The Green's function in each step results from
that of the preceding step by making use of the Dyson equation. The
eigenmodes are poles of the
Green's function. Figure 4
illustrates the bulk bands and
surface modes when each film is
two atomic layers thick, the
force constants y are identical
everywhere, and the mass ratio
between the two crystals is 2:1.

Finally, it has been shown [?]
that for films thicker than five
atomic layers, the few first
bands become very close to those
obtained by elasticity theory.

This theory can also be applied
to other vibrational models and
=2~ cos (k,0) - cos (k,a) even to the study of electronic
or magnetic properties of a SL.
An extension to phonons in SL
formed out of two different

v -

Fig. 4

diatomic slabs is under study. ULet us finally point out that the
knowledge of the Green's function makes possible the calculation of
different vibrational properties such as local and total densities of
states, mean square atomic displacements, etc.
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