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DAMPING OF HIGHLY EXCITED VIBRATIONS IN HEAVY NUCLEI

J. Wambach® and B. Schwesinger*+

*nstitut fiir Kermphysik, Kermforschungsanlage Jilich,

D-5170 Jilich, F.E.G.

*Department of Physics, State University of New York at Stony Brook,
Stony Brook, NY 11794, U.S.A.

Résumé - Nous présentons un modéle décrivant 1‘atténuation de T'intensité des
transitions 1 particule-1 trou dans des excitations plus complexes. lLes canaux
2 particules-2 trous sont traités explicitement tandis que les configurations
d'ordre plus grand 1e sont approximativement. Nous employons pour la fonction
de réponse 1indaire une expression equivalent a 1a diagonalisation de 1'inter-
action résiduelle dans les sous-espaces lp-1t et 2p-2t combinés. Les ;Ep1ica—
%68"5 pour les excitations de parité naturelie et non naturelle dans ““ZIr et
Pb sont discutées.

Abstract - We present a model which describes damping of lp-1h transition
strength into more complicated nuclear excitations. 2p-2h decay channels are
treated explicitly and higher configurations in an approximate way. We use an
expression for the linear response function which is equivalent to a diagonal-
jzation of the residual interaction in the combined lp-1h and 2p-2h subspaces.
Implications for natural and unnatural parity excitations in ““Ir and Pb are
discussed.

I - INTRODUCTION

The microscopic understanding of damping of nuclear collective motion has attracted
theoretical interest in the last few years. Considerable progress has been made es-
pecially for simple nuclear excitations 1ike single-particle and vibrational states
(see ref. 1 for a recent review).

Generally two damping mechanisms can be identified for vibrations:

(1) pure mean field damping which gives rise to a spreading of 1lp-1lh strength due to
shell structure (“fragmentation width") and a broadening above the continuum thresh-
old due to particle emission (“escape width").

(i1) damping from residual two-body collisions, which couple the Ip-1h doorway
states to nuclear compound states ("spreading width").

With increasing mass number mean field effects become less important /2/, at least
for Tow energy resonances, and the decay largely proceeds via more complicated
states. Their Tevel density increases rapidly with excitation energy and microscopic
descriptions of damping become difficult because of the enormous number of states to
be taken into account.

We present a model which treats 1lp-1h and 2p-2h states explicitly and higher com-
pound states in an approximate way. In the restricted space of 1lp-lh and 2p-2h exci-
tations a diagonalization iterates the p-h irreducible diagrams of order v2 to all
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orders. This procedure is equivalent to a diagonalization of V in the full subspace
/3/. Since all 2p-2h configurations in a model space of two major shells above and
below the Fermi surface are retained the model is especially powerful for describing
the high energy dispersion of strength.

In section II we give a brief outline of the theory and section III presents results
for 9OZr and 208py,, First, natural parity excitations are discussed. We also present
the isobaric analog state (IAS) which is an approximate eigenstate of the nuclear
hamiltonian. This constitutes a stringent test for models of strength dispersion.
Furthermore isospin interference effects enhanced by 2p-2h coupling are considered
for the quadrupole response in 08pp, In the sector of unnatural parity excitations
we show results for "the twist mode", a mode propagating via transverse zero sound.
The high energy dispersion of Gamow-Teller strength in ““Zr and 208 s also dis-
cussed.

IT - OUTLINE OF THE MODEL

The distribution of nuclear transition strength S to a weak external perturbation
d(t)= 172 (0 et 4+ g* ™Y (2.1)

is given by the linear response function

_ Im + . 4=l '<|Ql>l2
SQ(w) = - E—-{(lQ (w-H+E°+1n) Q> - —’aiﬁ;r”4 (2.2a)
_ In + ] ) 2 -1
=-=— ¥ <{Q tnpnh)><(n'pn'MI Q1> Cpp (0¥in)
npnh
n'ph'h
with
Cnn.(m+in) = <(npnh)[m-H+Eo+1nl(n'pn'h)> {2.2b)

Here H is the full nuclear hamiltonian, I> the exact ground state with energy Eo

and n an infinitesimal positive quantity. The calculation of S, involves inversion
of the complex matrix Cnn" which is of course impossible due fo the huge number of
states involved. Empirically, however, the strength function exhibits gross struc-
tures due to the fact that Q is a one body operator and the main contribution to S
comes from n=n'=1. Therefore to a very good approximation we only need the inverse
of Chp in the space of 1p-lh excitations. In terms of a projector P onto this space

P =Y [1plh><iplni (2.3)
we obtain
Sql) = - M ) Q¥ P{w-H -V4E +in+V (1-P) (w-H -V+E_+in) " (1-P)V} T'PQ | > (2.4)

The operator 1-P projects onto the space complementary to lp-lh, i.e. contains 2p-2h
and higher excitations. In the specific calculation presented below the 1p-1h model
space is spanned by 2 major shells above and below the Fermi surface (with discre-
tized continuum states). The hamiltonian H has been split into a mean field part Hy
and a residual interaction V. V can only couple np-nh states with n<2 to the 1p-1lh
doorway, i.e. the entrance channel for the decay is given by the Zp-2h states only.

We truncate 1-P at this level
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1-P ~ J | 2p2h><2p2h| (2.5)

and treat the more complicated states n=n'>2 on the average by introducing a finite
imaginary part iA in the 2p-2h propagator (A = 3 MeV is used). Furthermore V is neg-
Tected in the 2p-2h space which is a reasonable approximation at high frequencies
since the level density pngh(w) is large and the detailed energy distribution unim-
portant. A finite iA in the 2p-2h propagator also compensates for the neglected re-
sidual interaction in the 2p-2h space which redistributes the strength coupling to
the lp-1h states. The interaction diagrams which are iterated by eq. {2.4) are given
in Fig. 1. To order v2 we have selfenergy insertions on the particle or hole Tine
(which are diagonal in the 1lp-1lh indices) and ph-linked diagrams in which either a
ph-pair (bubble diagram) or a_pp- or hh-pair (ladder diagram) is exchanged between
ph-states. Since the set of V% diagrams is complete one can show that SQ(w) is posi-
tive definite for all frequencies w>0.

X4

(a) (b) (c)
Fig. 1 - Interaction diagrams up to order v2 jterated in SQ (eq. (2.4)).
We have chosen a phenomenological nuclear hamiltonian
2
__h
Hy = = zw & + U(r) (2.6)

where U{r) is a Woods-Saxon well. The nucleon effective mass m* is an adjustable
parameter. V is approximated by an antisymmetrized zero range interaction

V{r,e') = {Voglel + Voylelee'} %{I-P‘”}s(r-r') (2.7)

~ ~

with Tinear density dependence

v el = VMo (R) + VX1 (R)) (2.8)
p(R) = (1+ exp(RR /)™ 5 (R = (rert)/2) . (2.9)

The parameters of V and m*/m used are listed in Table 1.

Vo0 V68 Vo V51 R a m/m
5.22

107.3 -876.2  321.9 339.8 0.6 0.85
6.90

Table 1 - Strength of the residual interaction V as specified in eq. (2.7) in Me'
fm3. The two values for the interpolation radius Ry are in 90z and 298pp respec
tively.
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To discuss qualitative features of the response function SQ it is useful to define
operator averaged quantities 1ike the average ph energy

+ -+
= 2.10
the average interaction strength to first order
- + +
o= 1 GpVonorn Qen /L Gnln (2.10b)
ph ph
pIhl
and the frequency dependent second order term
2. _ + . -1 +
<V((A)) 7Q = %h Qphvph;Zth(m_SZthﬂn) v2p2h;p|h|0p|ht/%h Qthph (2.10C)

plhl

Since for finite n <V2

> is complex we obtain a frequency dependent energy shift

AEglw) = Re<V(w)2>Q (2.11a)
and a width

ryW) = 21m<V(m)2>Q (2.11b)
In terms of these quantities one can define an operator averaged response as

¢Sql)? =<IQ+QI>PQ(w) . (2.12a)
Here

) 1 Fo(w) (
P (w) = 2.12b)
Q" (w8 ()17 41/8 T (w)?

is the probability for finding transition strength induced by Q at frequency w. ES
in the denominator denotes the unperturbed energy <e n>Q plus the first order cor-
rection <V>Q. Note that in the limit where the transition strength is concentrated
in a single state In> = Q!> expression (2.12) becomes exact. Comparison of <S> with
the exact Sn shows that the average gives a good representation of the gross features
of the response like the centroid energy and the variance if the resonance is local-
ized on the lp-lh 1level.

II1 - RESULTS
Monopole vibratijons

Monopole vibrations are compressional modes of the nucleus and hence give informa-
tion on the bulk moduli in symmetric nuclear matter and {via N2Z nuclei) also in
asymmetric nuciear matter. The damping of the isoscalar and isovector branches is
quite different as we shall discuss. Bertsch /5/ first pointed out that the width of
the isoscalar monopole vibrations is very small because of a strong interference
between ph-unlinked and ph-linked diagrams. In isospin symmetric nu%1ear matter the
imaginary parts of selfenerqy and bubble diagrams cancel to order q /ké for spin
scalar isospin scalar density modes as discussed in ref. 6. This is also true to a
very large extent for a finite nucleus /7/. Fig. 2 displays rglw) in the Tong wave-

length 1imit for Q = ¢ and Q= rzro. In the isoscalar channel one observes remark
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Width [MeV]
5
s
]

-5

Fig. 2 - Operator averaged wid%gefor isoscalar (upper part) and isovector {lower
part) monopole excitations in Pb. The dotted 1ine indicates contributions from
selfenergy diagrams and the dashed and dash-double dotted lines give ladder and bub-
ble terms. The full line represents the sum.

able cancellation of selfenergies and bubbles (dash-dotted and dash-double dotted
lines). The ladders (dashed lines) only play a minor role. The situation in the iso-
vector channel is quite different. Bubble contributions are substantially reduced
and ladders instead of enhancing reduce the width somewhat at higher frequencies.
These average features are also present in the full calculation (Fig. 3).

The isoscalar transition strength (upper part) remains fairly localized after 2p-2h
mixing is turned on and the increase in "width" has to be interpreted as a redistri-
bution of strength between nearby lp-lh doorway states (dotted 1ines) via 2p-2h in-
teractions. Note that the centroid is shifted due to a repulsive contribution from
bubbles to AE.(w) which is well known in symmetric nuclear matgsr /8/. The second
86 er shifts gre quite sizable. While <V>py is about -4 MeV in 7“Zr and -3.3 MeV in

Pb at the resonance energy the shift from bubbles is 2 MeV in both nuclei. For
isovector modes the situation is different. Particle and hole spreading dominate the
decay and hence FQ is large. Consequently the modes are strongly damped (middie part
of Fig. 3).
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Fig. 3 - Monopole response in 907y, (1eft part) and 208py, (right part). The dashed
lines give lp-1lh alone while the full 1ine includes 2p-2h.

Quadrupole modes

In the gquadrupole response we see the same features: little damping of the isoscalar
vibration (upper part of Fig. 4) due to large cancellation of selfenergies by bub-
bles and a large spreading of isovector strength (middle part of Fig. 4). Note the

very long high energy tail which in
MeV. The isovector FWHM in

Ir extends up to 50 MeV and in
Zr has been reported by Pitthan /9/ as 7-8 MeV. Ye find

Pb up to 40

roughly 11 MeV somewhat larger than experiment. There are, however, theoretical un-
certainties in the interaction as well as experimental difficulties in the back-
ground subtraction for broad resonances.
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Fig. 4 - Quadrupole response in 907, (left part) and 208py, (right part). The dashed
lines give 1p-1h alone while the full line includes 2p-2h.

Charge exchange isovector monopole

Not only the giant dipole, also isovector monopole §xcitations provide information
about the bulk and surface symmetry energies. The r T -resonance in the charge ex-
change channel is of specia]l interest since its width is expected to be much narrow-
er than the rt, - or the r°tz_ -partners /10/. The latter is pushed up to higher
energies by the Cou]omB displacement energy Ec and the proton-neutron mass differ-
ence M. relative to r"t_. Monopole states in the (N+1,Z-1)-nucleus, however, are
lowered by the same amount. The 2p-2h level density is much smaller ggducing }85
phase space for the decay. The calculated strength distributggns in ““Zr and Pb
aregahown in Fig. 5. The shape of the isovector monopole in 7~Y is similar to that
in ““Ir both on the 1p-lh level (dashed 1ines in Fig. 3 and Fig. 5) and on the %B-Zh
1eve} éfu]] lines in Fig. 3 and Fig. 5). But there are distinct differences in 811
and “08py because of Pauli blocking effects. Due to the neutron excess the 3p and 2f
neutron orbits are occupied and therefore the analogs of the strong 3p>4p and 2f»3f
neutron transitions are missing (Fig. 5)}. Similarly the 2p>3p and 1f>2f transitions
are blocked. The coupling to 2p-2h states affects the lp-1h strength only siightly.
The reason for this is the reduction of the level density from ~ 800/MeV in the par-
ent nucleus to 200/MeV in the daughter nucleus. In Oy the calculated width is quite
consistent with inelastic (n',no) scattering by Bowman et al. /11/ which gives
roughly 14 MeV. In view of the fact, that in 20814 the escape width of the charge
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exchange monopole may be small /12/ there is evidence from our calculation that the
strength remains localized and can be seen in charge exchange reactions.

1800 v ‘}

' 30
5 £
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’ ' ] +1 e &1  3p,2f,1h
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— 3s,24d,1g

3000t i N
| J:LL 2p,1f

2000 -

y
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1000 o) n
r 4
o L !“ ln\\ T

Energy [MeV]

Strength [e2fn/MeV]

Fig. 5 - Isovector charge exchange monopole in 902r and 208Pb (1eft part). The ef-
fects of Pauli blocking in Pb are displayed schematically in the right part.

The giant dipole resonance

The giant dipole is the experimentally best known giant resonance. It still has
problems in the theoretical description. The value of the nuclear matter bulk symme-
try energy B between 28-36 MeV /13/ gives dipole excitation energies in nuclei which
are too low. In Fermi liquid theory hese is a simple relation between 8, the Landau
parameter in the nuclear interjor f3''™ and the quasiparticle effective mass

8 = 1/3 kE/ame (1 + 2fylindy (3.1)

With m*=m one obtains from 8 = 28 MeV f; = 0.53. To fit the dipole energy systemat-
ics one needs fé =1 for m*=m /14/. In our model the Landau parameter has to be ob-
tained from order V and VZ. The ph-Tinked V° contributions to the energy are small
however, such that the strength of the tt'-piece of V determines fo- We fixed fé
from a bulk symmetry of 30 MeV from eq. {3.1). It has been suggested that the rapid
"off the energy shell variation" of the effective mass might produce additional re-
pulsion to the dipole energy. This effect is included in our model since the real
part of the selfenergy diagrams which gives a w-dependent correction to the single
par38c1e eneggges /15/, is retained. Fig. 6 displays the results of the calculation
in 7YIr and Pb. We see almost no shift in the resonance position as 2p-2h states
are coupled to the lp-lh response. Decomposition into the various diagrams shows
negligible contributions from the bubbles, a very weak repulsion from the ladders
and a weak attraction from the selfenergies. The higher order corrections are too
weak to place the dipole at the right position if only nuclear matter information is
used. The solution might be provided by the surface dynamics in a nontrivial way:
(i) our model neglects residual interaction in the 2p-2h space. Particle-hole re-

scattering terms (Fig. 7) will build up collective surface modes. Inclusion of those
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Fig. 6 - Giant dipole resonances in 907, and 208Pb. 1p-1h results are represented by
the dashed 1ines, while the full lines include 2p-2h.

Fig. 7 - Rescattering diagrams in the 2p-2h space neglected in the present caicula-
tion.

rescattering terms /16/ changes the w-dependence of the effective mass and therefore
enhances off-shell effects. (ii) the density dependence of VOl[p] is crucial for the
ratio between surface and volume symmetry energy /17/. Our density dependence is
rather weak (Table 1) giving a small surface symmetry energy.

The high energy dispersion of transition strength is not only a feature of the iso-
vector monopole and quadrupole response functions, which are in an energy region of
high level density, but is also seen in the d6po1e (full line in F£88'6). The inte-
grated strength in the tail (w>22.5 MeV in 90z, and w>15 MeV in SY°Pb) are 13 %
and 10 % respectively. The classical Thomas-Reiche-Kuhn sum rule is exceeded by
about 20 %. This corresponds roughly to the amount of energy weighted strength in
the tail. Thus the energy weighted strength under the peak éXhausts the sum rute.

Isobaric analog states and isospin mixing

If effects Trom the Coulomb interaction could be neglected the isobaric analogue
state

1AS> = T_ 1>
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would be an eigenstate of H, since then T_ commutes with the hamiltonian. This is
the reason why, experimentally, the IAS is an extremely sharp resonance although it
lies in a region with a high density of 2p-2h states.

50 —

4 ]
Zr | 40:— Pb -
g s IAS 1 30f IAS i
g 20| :
& 2F 4 - ]
| “ 10 1

! - = 0 o L

Width [MeV]

o o a0 BEC T o I 20 30
Enerqy (MeV] Eneray (MeV]

Fig. 8 - Isobaric analog strength distributions in 902r and 208 (upper part). The
dashed lines give lp-1h only. The dotted lines include 2p-2h mixing from selfenergy
diagrams and the full lines include all diagrams. The lower part gives the various
contributions to the widths. Ladders are indicated by the dashed 1ines, bubbles by
the dash-double dotted 1ines and selfenergies by the dotted 1ines. The full lines
give the sum.

We have looked at the width of this state in 902r and 208Pb as a check of our model.
Fig. 8 shows the 1lp-lh result which is given by the dashed line. The finite width
here is a mathematical artifact coming from the finite imaginary iA introduced to
allow numerical dinversion of the strength function. The dotted Tines show the ef-
fects of the selfenergy insertions which results in a broadening comparable to the
single particle width. The inclusion of all second order terms cancels to a large
extent the single particle width restoring partly isospin symmetry. The bottom of
Fig. 8 indicates that this cancellation is due to the ladder diagrams and that the
bubbles do not contribute. The cancellation between sélfenergy and ladder, however,
is not complete since for 907 and 2%pp 17 % of the strength resides in the high
energy tail. Clearly, a better description would require consideration of ground
state correlations /18/, because the ground state used must be an eigenstate of H if
the symmetry argument is to hold.

Fig. 9 displays the response function to the electromagnetic quadrupole operator

_1 2

Qo =7 (E+r) Yo

(full 11n§) in comparison to the sum of isoscalar (1/2 rz Yom ) and isovector

(1/2 ) response (dashed 1ine). Since N#Z for 208Pb the two curves need not
co1nc18e and indeed we observe a rather large destructive interference. This is due

to the fact that the coupling to 2p-2h configurations carries isovector strength
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Fig. 9 - Isospin interference effects in the quadrupo1e response of 208y, The sum
of isoscalar (1/2 rZYZm) and jsovector {1/2 T, Y ) strength indicated by the
dashed line is compared to the electromagnetic (1§g(l+xo)r Y2m) response.

down to the region where isoscalar strength is concentrated (on the 1lp-1h level the
two peaks are well isolated). The destructive interference observed here moves 18 %
of the strength out of the isoscalar peak and might provide the explanation to the
observed differences in E2 strength from (e,e') and (a,a') /19/.

The twist mode

One of the more exotic nuclear resonances that has been speculated upon /4/ is the
nuciear twist. Its motion can be visualized as a rotation of the different layers of
a Fermi fiuid against each other, the angle of rotation around the z-axis being pro-
portional to the z-coordinate of the layer (Fig. 10).

Fig. 10 - Velocity field for the lowest excited 2~ "twist mode".

In a fluid dynamical description the velocity field of the twist is purely rotation-
al. Such a motion is only possible if there are tangential restoring forces effec-
tive in the fluid. The twist propagates via collisionless transverse zero sound so
its energy is independent of Fj (i.e. the nuclear incompressibility) and since it is
a spinless mode, it is of course also independent of G,:

k
- F /1 1 -1 -1/3 MeV
E,. = 2.3 w7’ T (1 + §-F1)R ~ 45 A (3.2)

tw
For 208pp this gives an energy of £y, = 7.6 MeV.

Microscopically the twist motion is expressed most easily through an operator of the
form

_ /5 1 (o) _ /10 1 [+]
Tem = /;"'N 1‘21 7 (Hr'i)z'ixzi I N 21 7 W) it b o w0 (3.3
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acting on the corresponding ground state. The special combination of isospin opera-
tors chosen in (3.3) restricts the twist to protons only. In this case T__ is the
orbital part of the electromagnetic M2 operator thus indicating a way to excite the
mode. However, the M2 operator also contains a spin part

~i=<q

/T8 9,49, 9
Sem =7 72 ey | (Bt “e*pr—) Leixeily=2 38
Al

which contributes 80 % to the M2 strength in 208py, leaving only 20 % for the twist.
Therefore it seems very likely, that twist strength will be obscured by spinflip
strength in (e,e') experiments /20/.

0.5 0.5 1.0 ﬁ
1 — i 10 20
10 20 1
. §

|

——— S = — i ) o
0.5 0.5
1

2.0
st A
0.5 0.5
| 1.0
1 4
1
— J&~¢%, ,k#zééx
5 E [Mev} 5 E [Me\/] 5 g [Me\/}
a b r

Fig. 11 - Low energy 2~ response: (a) denotes the twist part without interaction
(Tower part}, V included to first order (middle part) and to second order {upper
part), (b} displays the same for the spin part and (c) gives the total electromag-
netic strength.

However, the situation turns out to be much mors favourable as is demonstrated in
Fig. 11. Each figure displays the response of Pb to the operators indicated and
contains three cases and one smaller inset. The bottom graph in each shows the
strength function for the case of no residual interaction at all (V=0), i.e. the
hamiltonian is just made from single particle energies. The middle section displays
the case where the residual interaction between 1lp-lh configurations only is taken
into account whereas the upper curve gives the result of the full calculation cou-
pling 2p-2h to the 1p-1h states. A1l three curves cover the energy range of 0-10
MeV. The inset in the top graph shows the result of the full calculation in the
1p-1h+2p-2h space over the energy range 0-30 MeV. A1l curves are normalized to the

total electromagnetic strength in the range of 0-30 MeV
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- 4 2.2
SM2 = 3.7x10 prm .

The most striking feature exhibited by the results is the sharp concentration of the
twist strength around 7 MeV. This concentration is already present in the single
particle energies alone. Adding a residual interaction among the 1lp-1h states has
only 1ittle effect on the strength distribution, and actually a variation of the in-
teraction parameters over a large range does not move the twist from its unperturbed
position. Clearly this reflects the findings from fluid dynamical descriptions, that
the energy of the twist does not depend on the Landau parameter F,. Coupling the
2p-2h configurations to the lp-lh states finally breaks the twist into two pieces,
one at 7.2 MeV and one at 7.9 MeV.

In contrast to the twist,the fragmentation of spin flip strength is already present
with no interaction at all and pertains when the interaction and 2p-2h couplings are
added. The inset in Fig. 11b shows that 30 % of the spin flip strength resides above
10 MeV. 30 % however must be considered as a lower bound on the dispersion, for two
reasons: (i) the effective Gy resulting from the antisymmetrized zero range interac-
tion used here is too small. Any finite range interaction, which we had to discard
because of computational limitations, would shift the spin flip states to higher
energies where the density of 2p-2h states is higher. This shift would result in an
even stronger dispersion of the spin flip strength from the 2p-2h states. {ii) We
have not introduced any mechanism to quench magnetic strength such as isobar-hole
excitations. Such mechanisms only affect the spin flip modes and thus enhance the
relative importance of the twist to the M2-sum.

Considering these two effects, it seems very likely that the 25 % M2 strength found
experimentally /20/ in the energy range between 6-9 MeV is almost entirely due to
the twist which contributes 20 % to the M2 sum. Fig. 4 shows that even with the
rather large amount of spin flip strength located below 9 MeV the electromagnetic
response is dominated by the twist peaks.

Let us examine the particle hole amplitudes of the twist operator. Because z%_ is a
spinless 1w operat?r connecting AL=1 states only, the Targest ph amplitudes are
(n,jal"'l)(n,j'l,l)- g’iving

- (P //I(x+1)(§;2)(21+3) ] (3.5)

<0128 1{(n,2+1) x (h,x)'1}>;
2,0

Therefore the twist is mainly built up from states where both particle and hole have
high angular momenta. Table 2 shows some of the more important ph-states partici-
pating in the twist motion where energies of states designated by an asterisk have
been measured experimentally.

p h (ph)-energy rel. weight
o* *
*
lhg/z 197/2 7.7 .31
* *
27 /5 2d5 /5 6.8 11
3
265/, 2d3 5 7.4 11

Table 2 - ph-configurations participating in the twist motion.
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Remembering that the position of the twist is insensitive to the residual interac-
tion, the fact that most single particle energies are measured ones contributes
strongly to the significance of the results presented. Obviously the concentration
of the ph energies around 7 MeV reflects the fluid dynamical findings that the posi-
tion of the twist is governed by the kinetic energy alone.

In contrast to the twist the spin flip mode does not weigh the high angular momentum
ph-amplitudes because one looses one power of & by replacing L, in (3.5) by the spin
operator o,. Therefore the spin flip is dispersed over all (in"our basis 86) ph
states.
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Fig. 12 - {(e,e') spectrum of the Darmstandt group /20/. The arrows indicate the po-
sition of M2-states.

Fig. 12 shows the {(e,e') spectrum from the Darmstadt Linac group /20/ where arrows
indicate the position of M2 states. According to the arguments presented the two
prominent peaks at 6.9 MeV and at 7.9 MeV must contain predominantly twist strength.
Probably accidentally these two peaks agree perfectly with the two twist peaks cal-
culated.

Gamow-Teller resonances

The dispersion of gz strength due to multipair excitations is of special relevance
for the quantitative understanding of isobar-hole admixtures to Gamow-Teller (GT)
transitions. It has been suggested /18/ that the giant GT-resonances have long tails
due to coupling to 2p -2h statgs We have analyzed the gt_ -strength functions within
our model in both 292r and Pb. The single particle transitions in the independent
particle model are indicated in Fig. 13.

The weaker 3p>3p and 2f»2f transitions in 208Pb are not listed in the figure for
simplicity. The antisymmetrized residual interaction V (Table 1) which has been fit-
ted to natural parity excitations is too weak in the spin-isospin channel to repro-
duce the features of the experimental (p,n) spectra /21/. He therefore readjusted
Vi1 {eq. (1.7)) to_optain the proper resonance positions on the lp-1h level (contri-
butions of order_V° to the excitation energy are very small). We obtained

Vip = 228 MeV fm3 close to the value quoted by Gaarde et al. /22/. After coupling to
2p-2h excitations the gr_-distributions displayed in Fig. 14 were obtained. In both
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Fig. 13 - Dominant lp-1h transitions in 907y, (right part) and 208pp (1eft part) in-
cluding 2p-2h mixing.
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Fig. 14 - GT-strength functions in 90z, {upper part] and 208py, {Tower part) includ-
ing 2p-2h mixing.

nuclei the resonances are substantially broadened compared to the lplh-distributions
and they exhibit long tails on the high gnergy side. The integrated tail strengths
(w> 22.5 MeV in 907,. and w > 25 MeV in 20 Pb) are 25 % and 28 % respectively. Since
our model is an extended TDA and Pauli unblocking of strength due to ground state
correlations is not included we conserve the 3(N-Z) Ikeda sum rule /23/ (SB+ = 0).

3¢ I.J r
. Ls 2
B !y

lerd = pih * C3p2n + cip2h | 2p2n>

Fig. 15 - Structure of the GT wave function in the vicinity of the resonance peak.

The high-lying GT-peak in 90z7¢ is mainly built on the j, + j. transition, in this
case nlgg/z > plg7/2. There is one specific 2p-2h transition in which a proton in
the j -shell drops to the j, -shell exciting a neutron lp-lh transition iy, > 3

(Fig. 15). If the one body LS potentials for protons and neutrons are the same, this
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configuration is degenerate with the nj, » pjc transition. The coupling matrix ele-
ment is also large, since the radial wave functions maintain maximum overlap such
that this_2p-2h state becomés the dominant decay channel in the vicinity of the
peak. In 208py, the 1p-1h wave function is somewhat more complicated, however, for
th? n1113/2 > p1111/2 transition which has the Targest amplitude the same arguments
hold.
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