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Résumé - A partir de photographies de microscopie &lectronique de films
minces et discontinus d'or, 8tudiés expérimentalement par Norrman et colla-
borateurs, on calcule la transmittivitd@ 3 1'aide d'une théorie statistique
présentée précédemment. Les résultats sont en assez bon accord avec les
valeurs expérimentales.

Abstract - Using the electron micrographs of thin discontinuous goldfilms,
studied experimentally by Norrman et al., we calculated the transmittance on
the basis of a statistical theory given in a previous paper. The results
agree rather well with the experimental values.

The statistical theoryl) for the dielectric susceptibilities of a thin island film
is used to calculate the transmittance of normally incident light through gold films
on a glass substrate”/. Taking local fields into account, the dielectric suscepti-
bility parallel to the substrate is found to have the following general form

-1
Y = oz“(l K" a“) n

where a“ is the average polarizability of the islands parallel to the surface of
the substrate per unit of surface area. Furthermore, Ky has the dimensionality of
an inverse length and accounts for local field effects parallel to the surface. An
explicit expression for Kj will be given below. The transmittance of normally in-
cident light, divided by the Fresnel value, is given in terms of vy by

_ 4 Emy (2nly] \21"
T = [1+ }\(Hns) + \?\(Hns)) ] (2)

where X is the wavelength of the incident light, ¢ the velocity of llgyt and n/

the refractive index of the substrate. For the film under consideration the is-*

lands are in reasonable approximation prolate spheroids with the long axis parallel

to the surface of the substrate. The polarizability of such a spheroid is given bfo
1

oc(k)(e,v) = V[(e—e:m)n1 +—é L(k)(e)] - (3)
™

where V and e are the volume and the eccentricity of the spheroid. Furthermore,
€ 1is the dielectric constant of the island material (gold in this case) and ¢ is
the, as yet unspecified, dielectric constant of a medium in which the island

is thought to be embedded, which satisfies I<e g 3 ¢ is the dielectric con—
stant of the substrate (glass in this case). mos The depolarization fac-
tors in the direction of the long, k=1, and the short, k=2, axis parallel to the sur-
face of the substrate are given by

L(l)(e)=A(e)-—B(e) and L(z)(e)=%—%A(e)-B(e)

g ~1
AGe) =4e” P (1-e?) {Jln (—Lf:) 2e} and B(e) ='2]Z (%) (1-e2)" )
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Fig.1- High-resolution electronmicro-
graphs of regions of the films

B is due to the interaction with the image dipole and we note that the spheroid
touches the substrate surface. TFor different islands e, and V. will be diffe-
rent. The average polarizability parallel to the surfack is given by

aﬁ:% t 2 [ (1)(e. i) +a(2)(ei,vi)] / ? Vi (5)

The weight thickness t is in principle equal to Z V. per unit of surface area.
In practice one finds a"somewhat lower value?) due 1 to so-called "lost weight".
We used the experifmental values t =1.5, 1.7, 2.6, 3.0 and 3.6 nm in our calcula-
tion. Using a computer analysiss) of the electron micrographs, fig.l, we obtained
the average polarizabilities. In fig.2 these are given using €= %(1+€S). The
description using the dielectric susceptibility vy for the film gives the same
transmittance as a plane~paralle1 plate if one uses

Ceff ~ Cn f { aﬂ\ . Yy -1
S ¥ Zem \t ) with f= topt and topt—(EmKH) (6)

for the dielectric constant, filling fraction and thickness of the plate. If one
would use spherical islands and neglects image dipoles eqs.(2)-(6) give the original

Maxwell Garnett formulal/. This shows the fact that the optical thickness in the

usual description may be calculated in terms of the local field factor Ky . This
factor, and thus the optical thickness, is given in our theory in terms of the cor-

relation function g (r) for the distribution of island mass along the surface of
the substrate by v
1 3
K:—-————:_
I emtopt 4

dr {]_€s> r3(r?-84%) ] 0

[
7 g,(x) '.1+ \1+z—:s (r2+4d2)5/2

0 m— 38

Here d is the average distance of the centre of the islands to the substrate. The



Cl10-381

g, ]
VA 1.5 ]
o K
//\\A 1.7 — y
(=8 ]
St 3
J///‘///&\\ v d
26 =t ;
= vv - i h
[ 1
2t ]
AN ™30 X .

A4 p— o
Eg [ 3
PEGEIR =1 :
7 E [ —_’i
— E 3
= 3
fj tnei 5% r 3
Zz{ ]
0 4o pr iy ]
Fig.3- The mass distribution correla- EE o b
tion functions of the films r :
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second term between the square brackets is due to the image dipoles. In fig.3 the
correlation functions, obtained from the electronmicrographs, are given for the va-
rious films. The resulting transmittances are compared with the experimental values
in fig.4, where we used ¢_=13i(l+c ) . In order to gain some insight into how the
various parameters like the eccentficity, €, , the optical thickness and the image
charge affect the computed transmittance T, we have varied all these quantities.
Fig.5 shows the values of T for 3 different choices of ¢ and it is apparent that
both the location of the minimum and the amount of absorption depend strongly onm €_ .
For all films we find that € =} (l+€ ) 1is the best choice. A theoretical moti-
vation for this choice may alSo be given!d) based on the observation that €off
should approach €& in the f=1 1limit. Fig.6 shows that accounting for the
image dipoles increases the width of the minimum in T . This improves the agree—
ment with the experimental shape. In fig.7 the value of T 1is compared with a va-
lue obtained by stretching all the islands. This shows that the location of the mi-
nimum is a sensitive function of the shape of the islands. Clearly the values of the
eccentricities found from the electrommicrographs and used in the calculation lead

to a satisfactory value of this location. In fig.8 the value of T 1is compared to
a value obtained by decreasing E g It is interesting to note that the decrease

of t ?as an effect comparablepgo an increase of € . This explains why Norrman
et a1%P% 2) yere able to fit their data using € =1.2, rather than the value ¢€_ =
1(1+€ ) =1.67 we used, using topp 4as an adjustable parameter. It should be em
phasized however, that the statistical analysis leads to a unique value of t so
that we obtain our values of T without fitting any parameter. opt
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