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THEORY OF S I G N A L  GENERATION I N  A PHOTOACOUSTIC C E L L  

B.K. B e i n  and J. P e l z l  

AbteiZung fiir Physikund Astronomie, Ruhr-Universitdt Bochwn, 4630 Bochwn, 
P.O. Box 102148, F.R.G. 

RESUME - La pression dans une cellule photoacoustique est dgdui- 
te des gquations fondamentales dgcrivant la dynamique des gaz. 

ABSTRACT.- Based on the fundamental physical equations governing 
the dynamical behaviour of a gas, the pressure signal 

is derived for a gas-filled photoacoustic cell in contact with a 
radiation-heated solid sample. 

1. INTRODUCTION 

The photoacoustic effect (PAE) associated with solids is known since a 
century. Only during the last decade, however, it has found consider- 
able application in connection with Photoacoustic Spectroscopy (PAS) 
and Photoacoustic Calorimetry (PAC) for the surface and subsurface 
analysis of solids. 

The understanding of this effect has been obscure and controversial 
for a long time, and only in recent years a theoretical description of 
the sound generation in the gas volume has been achieved, thereby giv- 
ing the possibility of relating the thermal or optical properties of 
the solid to the pressure signals in the PA cell. Generally accepted 
for the interpretation of PA measurements is the intuitive piston mo- 
del /I/ which considers two distinct regions in the gas volume: A thin 
isobaric thermal boundary layer expanding and contracting at the solid 
gas interface, thus acting as a piston on the major part of the gas 
volume which is characterized by the adiabatic gas law. Another limit 
of the general equation of state of the ideal gas, the isochoric limit 
, has recently been used for the interpretation of the pressure sig- 
nals in a PA cell of rather short gas length /2/ .  Alternatively, va- 
rious other theories for the interpretation of PA measurements have 
been based on the formalism of linearized acoustics /3,4,5,6/. 

In the present work, the signal generation in a gas-filled PA cell is 
treated 
- without such restrictive a-priori assumptions about the equation of 
state of the gas, 

- with one formalism valid for the entire gas volume, 
- and avoiding an a-priori linearization. 
Starting point of this analysis are the basic equations of fluid dyna- 
mics, then a generalized equation for the acoustic signal generation 
is derived, special solutions are given, and various solution limits 
(piston model, PA cell of short gas length, etc.) are discussed subse- 
quently. 

2. THE PHYSICAL MODEL - BASIC FLUID DYNAMIC EQUATIONS 

The basic four laws of fluid dynamics valid for the entire gas region 
are 

p = R P T  I (1) 
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+ 
z + p d i v v = O  , 

-f + 
p = 2 -grad p + A ; + -$ grad div v , 

p c V g = - d i v $ - p d i v ; + p O  . 
The above equations apply to a compressible Newtonian fluid in laminar 
motion. Constant shear viscosity p is assumed whereas the bulk visco- 
sity can be neglected for the ideal gas. In what follows, the general 
equation of state (1) of the perfect gas is considered, without any 
special assumption about the thermodynamic processes involved, neither 
isobaric-adiabatic nor isochoric. The derivatives with respect to time 

= a + ($ grad) Dt E 
in the continuity equation ( 2 ) ,  the momentum (3) and internal energy 
balance (4) are the substantial ones which include local and convec- 
tive changes due to nqnzero fluid velocities. In the momentum balance, 
external body forces GI such as buoyancy forces may appear. The energy 
balance relates the temperature field to the heat fluxes in the gas 
volume , 

+ 
F = - k g r a d T  , 

and to the rate of work, 

- p d i v G + p O  , 
where p O describes the energy dissipation rate due to viscosity. The 
specific heat at constant volume c is assumed to be constant, inde- 
pendent of time or frequency. V~hus , the relaxation processes in 
diatomic or polyatomic molecules are excluded from treatment. Further- 
more, it is assumed that there are no mass or heat sources or sinks in 
the gas volume. 

3. GENERALIZED EQUATION FOR THE PRESSURE SIGNAL 

By incomplete elimination between tpe fundamental equations (1) - (41, 
a single first qrder partial differential equation for the pressure 
distribution p(r,t) is now derived, given by 

-+ 
+ y div (p ;) = (y-I)[-div $ +;  - p ;  + 

1 -t -t + p (O +;A2 + - vgrad divv ) 3 

- p (; grad) ; ] . ( 5 )  

Here, y is the adiabatic constant. On the right hand side of this 
equation and based on order-of-magnitude assumptions, we can+neglect 
- the cubic terms of the convective or acoustic velocities v or 
their local derivatives aG/az , 

- and the terms containing products of the shear viscosity p with 
squares of the velocities or their local derivatives. 

Then we have 
+ -+ + + a2 Q +, div (p V) = (y-I)[- div $ + v  - P Z] - 

at 

Thi's differential equation can be simplified by using further physical 
restrictions, namely, 
- body forces acting directly on the gas are ignored, 
- and there may be no mean (time averaged) convective motion in the 
gas volume. 

Under this assumption, the last term of equation (6) is of higher or- 
der as compared with the heat flux divergence and can be neglected. 
Thus we have the simple differential equation 



which can be integrated over the gas volume V to give an integro- 
differential equation 

This equation relates the time and space dependent pressure distribu- 
tion p($, t) in the+gas volume to the heat fluxes Fs (?s , t) and to the 
gas velocities v (r ,t) at the sample-gas 
interface and atsthg cell boundaries S 
(Fig. I ) . 
The gas velocities at the solid-gas inter- 
face can be caused by gas oscillations a- 
cross the surface of a porous solid sample 
or by thermoelastically induced surface 
vibrations of the sample. For the frequen- 
cy range used in gas-microphone detected 
photoacoustics, 

l o  Hz lo4 Hz , = s 
a measurable effect of the latter can be 
detected with thin solid disks in the qua- Fig.l. Schematic PA cell 
sistatic limit of thermoelastic oscilla- 
tions /7,8/. 

The integro-differential equation (8) applies to the usual PA cell 
where the gas length Rg is limited from below by the thermal boundary 
layer thickness Rth , and where Rg is small as compared to the wave 
length of the acoustic signals, 

Rth < Rg " Xs . 
As the general equation (8) has been derived without any geometrical 
restriction, it should also apply to extended gas volumes used in PA 
experiments at low temperatures /9/ as well as to PA cells of short 
gas length /2 / .  In this case the modulated heat fluxes to the walls 
of the cell have to be taken into account and it has to be provided 
that the gas still can be treated as a continuum. 

4. SIGNAL GENERATION - SPECIAL SOLUTIONS 

Now we will write down and discuss some special solutions obtained 
from the general equation of signal generation (8) under the follow- 
ing geometrical and physical restrictions: 
- A PA cell of cylindrical symmetry is considered, appropriate to des- 
cribe focussed radiation heating. The ends of 
the cylinder are closed by the solid disk and 
an optical window, respectively. 

- The gas length may be small as compared to 
the acoustic wave length, 

R << As . 
9 

Due to this assumption, the pressure evolu- 
tion in the cell may be independent of the 
spatial coordinates, p(r,t) = p (t) . 

- At the solid-gas interface an oscillating gas I 

velocity is prescribed due to thermoelastic z,(t) f 0 
oscillations of the solid surface. The surface 
may be represented by a rigid oscillating disk. Fig.2. ThermOelastic contributions 
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The position of this disk zs(t) and the oscillating gas velocity are 
then related by 

Observing these restrictions, equation (8) can be integrated over the 
gas volume. Subsequently, the result can be integrated over the time 
to give the pressure evolution p = p(t).  now,^ the heat fluxes at the 
boundaries of the gas volume may be separated in a stationary or qua- 
sistationary part which is constant or only slowly varying on the time 
scale of the heating modulation and a part rapidly changing on this 
time scale, viz. 

- 
Fz(r,zs,t) = FZ(r,zS,t) + GFz(r,zS,t) . 

Furthermore, it is assumed that there are no rapidly changing heat 
fluxes to the window or the walls, 

These conditions are fulfilled if the gas length exceeds the thickness 
of the thermal boundary layer and if an appropriate cell radius a is 
chosen. Then the pressure evolution can be written as 

- The first term of this result is the main term of the thermoelastic 
contributions to the pressure signal. 

- The second term contains the usual surface heat flux contribution 
(Rosencwaig and Gersho's piston model) coupled here with a nthermo- 
elastic factor". 

- The third term normally should cancel out when the time averaged 
heat balance for the gas volume is closed; perhaps it could give 
contributions to the pressure signal when transient inbalancies oc- 
cur. This third term is coupled to thermoelastic contributions, and 
if these are absent, it cannot contribute to the acoustic signal but 
only to a continuous pressure increase. 

A more general solution of the integro-differential equation (8) can 
be obtained if we additionally admit porosity of the solid sample. In 
this case, the oscillatory gas velocities at the solid-gas interface 
are decoupled from the position of the sample surface, 

vz(r,zslt)#dzs(t)/dt , vz(r,zs,t)=vs(t)#O , 
zs(t) # 0 

If we assume I D  geometry and fulfill the other conditions as observed 
for solution (9), we have 



- The first term is the main contribution due to porosity and surface 
vibrations of the solid sample. 

- The second term contains the usual modulated surface heat flux 
coupled here with effects due to porosity and surface vibrations. 

- The third term again exists due to inbalancies of the time averaged 
heat balance for the gas volume. 

In what follows now, we assume: 
- Vibrations of the solid surface can be neglected, z (t)/R + 0 . 
- The time averaged heat balance for the gas volume ig clos%d. 
- The gas velocities at the solid surface due to porosity are small, 

vs(t) = 6vs(t) 

so that nonlinear contributions and non- 
linear coupling between the modulated sur- 
face heat flux and surface gas oscillations 
can be neglected. 

Then, equation (10) is simplified to give the 
pressure signal in a gas-filled PA cell with 
a porous solid sample at rest: 

(11) 6p(t) = p(to) /tdT 6vs ( 7 )  i- z,(t> I = 0 
g 

Fig.3. PA cell with 
a porous solid 
sample 

5. REPRODUCTION OF THE PISTON MODEL AND OF OTHER SOLUTIONS 

Starting from our solution (9), we will reproduce some known solutions 
(piston model, PA cell of short gas length, etc.) in the following. To 
this finality, we assume that 
- surface oscillations may be negligible , zS(t)/Rg+ 0, 
- the time averaged heat balance is closed, 
- and that 1 D geometry may be considered, 

Then we obtain from equation (9) 

When we here insert the thermal wave solution for the semi-infinite 
space, 

6T(z,t) = O exp(-z/pg) exp[i(wt - z/p 9 )] , 9 = ( Z a / w )  
1 / 2  

and use 

z + z  
we have S 
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where the thermalJdiffusion length in the gas pg is related to the 
thickness of the thermal boundary layer by 

Rth = 2 " vg . 
We now use the specific heat capacity at con- 
stant pressure to define the thermal diffusivi- 
ty in the isobaric thermal boundary layer, 

(14) a=k/(cppo) . 
Furthermoye, we use the equation of state ap- 
plied to the time averaged quantities at the 
solid-gas interface, 

- (15 )  (cp-cv) P , - P ~ / T ~  , 
and then we can transform equation (13) to co- Fig.4. Piston model 
incidewiththe pressure signal as given by Ro- 
sencwaig and Gersho /I/, 

1-I 

C T l  
= 2 3- 3 2 e x p i l ~ t - ~ ) ]  . 

Cv To R 
g J2 

The equivalence between our pressure signal (12) and the piston model 
also can be shown without the restriction to the thermal wave solu- 
tion. We use an integral relation between the arbitrarily prescribed 
surface heat fluxand the corresponding temperature distribution in the 
semi-infinite space, 

as an approximation for the thermal boundary layer of finite thickness 
to transform equation (1 2) . We then have 

Using once more the equations (14) and (15), we can transform our 
equation (16) to coincide with a more general formulation of Rosen- 
cwaig and Gersho's piston model, 

Korpiun and Buchner recently proposed the isochoric limit of the gas 
law for the interpretation of PA measurements. 
In fact, the isochoric limit should apply for 
PA cells with a rather thin gas layer where 
the gas length is comparable with or shorter 
than the thermal boundary layer thickness or 
the thermal diffusion length (Fig. 5. ) , 

Rg < ug, Rth ' 

In such a case, the thermal diffusivity has to 
be defined with the specific heat capacity at 
constant volume 

z 

a = k /(C,P~) . Fig.5. Thin gas layer 



When we use this last definition and equation (15) to transform our 
pressure signal (16), the final form should be independent of the adi- 
abatic constant as Korpiun and Buchner proved experimentally / 2 / .  

Naturally for thin gas iayers the time dependent heat transfer to the 
opposite window has to be taken into account for a correct derivation 
of the pressure signal. 

A further solution can be obtained from our integral (9): For small 
relative displacements, 

zs(t)/Rg < 1 
integral (9) can be expanded to coincide with the usual composite pis- 
ton model, 

l y ~ l ~ J t d r  SFz(zs,r) + Y p(to) 6zs(t)/lg . sp(t) = R 
9 

(19) 

Based on integral (9), higher order terms in the relative displace- 
ments and nonlinear coupling of the surface 
displacements with the oscillating heat flux 
effect at the solid-gas interface (Fig.6.) 
could be possible. 

! .! 
6. CONCLUSION I 
Based on the general equation of state of the ;:: 

,el 3T(znt) ideal gas and on the fundamental equations of 
fluid dynamics (the equation of continuity, the I 
momentum and energy balance), a qeneral inteqro- z,(t) 
differential equation is derived-for the acoi- 
stic signal associated with the Photoacoustic Fig.6. Composite 
Effect on solids. Under the assumption of spa- piston mo- 
tially constant pressure evolution in the sur- del 
rounding gas volume, two principal solutions of 
this equation are given which differ by the mechanical boundary con- 
ditions considered at the solid-gas interface. Starting from these 
two solutions and with the help of further assumptions simpler so- 
lutions can be derived and reproduced ( pressure signal in a gas 
volume in contact with a porous solid, piston model, PA cell of short 
gas length, and composite-piston model). The lines of descent and the 
relations between the various solutions are presented in the scheme 
below. 

INTEGRO-DIFFERENTIAL EQUATION PAE - EQU.8. 
/'\ 

SUPERPOSITION OF THERMOELASTIC DECOUPLED MECHANICAL BOUN- 
AND HEAT FLUX EFFECTS - EQU.9. DARY CONDITIONS - EQU.lO. .. / 

,/' I ' .' / //" ' 
COMPOSITE PISTON MODEL SHORT GAS 

\ 
POROUS SOLID 

PISTON (R+G) LENGTH (K+B) - EQU.ll. 
- EQU.19. - Equ.17. - EQU.18. 
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