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TRANSIENTS IN CW LASER HEATING OF SEMICONDUCTORS : GENERAL METHOD.
ANALYTICAL SOLUTIONS AND ILLUSTRATIONS

.t . . .
A. Maruani , Y.I. Nissim, F. Bonnouvrier and D. Paquet

C.N.E.T., Laboratoire de Bagneux®, 196 rue de Paris, 92220 Bagneux, France

Résumé - La méthode des transformées intégrales est appliquée 3 1'&quation
nonTinéaire de 1a chaleur pour déterminer 1'&chauffement d'un semiconducteur
irradié par un laser continu. Pour le transitoire , on traite exactement les
nonlindarités dues aux variations de la conductivité thermique et adiabati-
quement celles dues aux variations de la chaleur spécifique. On envisage
1'influence du coefficient d'absorption, et de la forme du faisceau laser.
Pour tous les cas considérés, les expressions obtenues sont analytiques.

Abstract - The method of integral transforms is applied to the nonlinear
heat equation to determine the heating of a semiconductor irradiated by a CW
laser beam. For the transient, the nonlinearities associated to the varia-
tions of the thermal conductivity are treated exactly and those due to the
variations of the specific heat adiabatically. The influence of the absorp-
tion coefficient, and the shape of the laser beam are treated. For all the
cases considered, the results are in analytical form.

Midway between the continuous regime and the very fast, far from equilibrium,regime,
the transients in CW laser heating of semiconductors address two problems of noti-
ceable importance : a fundamental one concerning phase transitions for intermediate
time scales and a technological one concerning laser processing of materials. In
that respect, a reliable knowledge of the actual temperature rise is in order. Mea-
surements are difficult and exact computations cumbersome. This paper deals with the
problem of calculating the temperature rise with an operational accuracy, and with a
formalism leading to simple expressions. The basic idea is the systematic use of
integral transforms for all spatial and temporal variables. That idea was pioneered
by Lax/l/ who.presented general results for the stationary case, linear and nonti-
near. By the latter, it is meant that account is made of the variation of thermal
coefficients with the true temperature, which will be denoted hereafter by T. In the
stationary case, only the thermal conductivity K(T) need be accounted for. The stan-
dard procedure is to perform a Kirchhoff transform on the nonlinear Fourier
equation: through that transform, the equation for T becomes a linear Fourier equa-
tion for some variable o, then one solves for o. Finally one has to go back from
the linear temperature rise © to T, and that is done through a quadrature involving
K(T) only.

In the transient case, both variations of K(T) and the specific heat C(T) (or the
diffusivity D{T) = K(T)/C(T)) have to be included in the calculation. Strictly
speaking, the Kirchhoff transform is no more valid in that case. A novelty of this
paper is to present how one can overcome that difficulty and still eventually exhi-
bit tractable analytical results. Section 1 is devoted to a brief review of the
model /2/ and a discussion of the incidence of C(T) on the transient regime. Sec-
tion II presents some results for selected practical cases.
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I - THE MODEL

We shall restrict the mathematical formalism to what is strictly needed for this
presentation. It s assumed that the laser is specified by its intensity distribu-
tion as a function of the radial distance r : I(r) = I f(r/r ) where r  is a cha-
racter1st1c length of the beam and I, = P /2xr . For a gaussran beam f(r)=
exp-r2/2y 2 = exp-R2/2, for an uniform beam f(¥)=1 for r« o (Rg¢ 1) and null
outside. ?he sample is infinite in the x, y directions and semi-infinite for z> 0.
Cylindrical coordinates are then appropriate. The laser is switched on at t=0, so
that it is described in the time domain by the Heavyside step function H(t). For the
considered wavelength, the effective linear absorption coefficient is «. The reduced
quantities are utilized W=ar Z=z/z0 and n=K/Cr02 to obtain the nonlinear Fourier

equation :
m 42 ( >+ 2T - Aol - WR P(R)ep-WZ
For Y ot e
submitted to the initial condition (2) T(t=0)=T 6 and the Neumann condition
(3) (aT/0z) ;- = 0. Equations (1), (2) and (3) comp]ete]y specify the problem.

Let us assume for the moment that C(T) C(T,)=Cste. Then equation (1) can undergo a
Kirchhoff transform and eventually be read’ as (1), but with K(T) replaced by K(T,)
and T by o as mentioned above. Then a Laplace transform is performed on ot} and a
Bessel transform on o(R) : o(R,Z,t) » o(r,Z, p). Similar transforms are done on
the right hand side of this equation. One has now a linear differential equation for
o{r,Z,p) which is trivial to solve, accounting for conditions (2) and (3). Back to
the original variables, it is shown that  for-a gaussian laser beam :

KE) b
@  T(oot ot) = A JEZB)'—‘? exp(Wa) erfe (W) dux
LI G I+ 2w

details and extensions are to be rev1ewed in a forthcoming publication. Now, from
room temperature throughout the solid phase regime the thermal conductivity for most
semiconductors is fairly well fitted by (5) K(T)=k/(T-T,) which shows that the
major contribution to this parameter comes from the phonon mean free path dependance
/3/. This particular form allows the quadrature back to T to be performed leading to

o TRZE) =Ty 4 (T-Ta) ap{Egz0) /(To-Ta)}

The above expression would be exact if C(T) were constant ; it is not. However, the
diffusivity writes (7) D(T)=d/(T-Ty) where the value of Ty is within a factor 2
from the value of T,. The var1at1ons of C(T) are then much smoother than those of
K(T) and, to first order, can be neglected. (In any case the stationary temperature
is 1ndependant of C). A further step along that line is to replace selfconsistently
C{T,) in {6) by C(T). It so happens that the result, which in the general case would
present as an implicit egquation for T can, in the spec1f1c case (6) and (7) be in-
verted, leading to :
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the validity of the result is submitted to the validity of the adiabatic approxima-
tion, expressing that at each moment, the time scale for the temperature change is
much shorter than the time scale for the variations of C(T). While numerical analysis
will be presented elsewhere, we sketch here the argument : (8) is valid provided
T-1aT/at<<C™laC/at or T-lCaT/aC<<l, which is the case in most semiconductors.
Some implications of that procedure are now described.

IT - APPLICATIONS

We recall briefly (Fig.1) one result concerning the maximum temperature rise for an
infinite absorption coefficient, in the conditions described in ref/2/. The influ-
ence of a« on the stationary case is sketched in Fig.2, which is basically the same
curve described by Lax/1/ although derived from a different formalism, leading to
different analytical expressions. It results from this curve that it is useless to
correct for o as soon as W=>10.

Consider now two laser beams : gaussian and uniform, but with such intensities and
beam radii that the total energy deposited on the one hand, the maximum temperature
rise on the other hand are respectively identical . The radial dependance of the
sur face temperature in the case of infinite absorption is drawn in fig.3, showing up
a smoother profile in the uniform laser case.

12081 p -Rti-R “’RL cste =Z2.9kW,/cm

s fo <T7km Fig.1l : Transient regime for a CW laser
= beam as a function of the beam waist,
& 800 and in the case of infinite «. The maxi-
= ] mum temperature rise is calculated with
i data relevant to Si {/2/,/3/).
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Fig.2 . Maximum temperature rise as a
function of W=or ,. Actually the curve
represented here is the mean value bet-
i ween two very simple analytical expres-
sions respectively under and overestima-
ting the exact formula. As can be seen,
the difference between those two expres-

T sions is a decreasing function of W.
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The influence of W on the transient is shown in Fig.4 for a gaussian laser beam. No
time constant can be defined since the process is by no means exponential. The time
scale is strongly depending on the beam waist and the exciting energy, but is in the
range of some microseconds. Some asymptotic values are readily deduced from fig.2 ;
note that for the standard conditions of those calculations (Pypg /r )=2900W.cm™

Teading to the linear temperature rise and the corresponding true temperature of
respectively 385°C and 1203,4°C, in the case of infinite a.
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Fig.3 : Normalized temperature rise
) as a function of the normalized ra-
. dial distance for a gaussian (solid
1 curve) and a uniform (dashed curve)
. Taser beam. In both cases, the ener-
gy and the maximum temperature rise
L ~ ] are identical. The lower curves re-
T— present the energy distribution in
the spots. The thin dashed curve is
| ] a very simple approximation of the
2 C I T T T T R R T thick one, valid for R< R, (uniform
NORMALIZED RADIAL DISTANCE beam) . In both cases, W = =.
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< 00 for a gaussian laser beam, as a
s | 2 function of W=ar . Each curve is res-
= pectively the mean between two under
& soch ~ e :
& and over estimates. For all curves,
B o ] P abs /Y ;=2900W.cm~1. Thermal data
are those of Si. Asymptotic values
N L L are to be deduced from fig.2.
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As a conclusion further applications of the method described in a previous publica-
tion have been described. These applications are still thoroughly described simply
and analytically.
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