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Abstract. - Landau theory proved itself-appropriate for describing phase transitions
in systems such as ferroelectrics and ferromagnets. Primarily Landau established the
theory for second order phase transitions. Later on Devonshire generalized Landau's
approach to first order transitions. The essential point of Landau theory is a power
series expansion of the free energy,; depending on temperature and on an order para-
meter describing the phase transition. In order to deal with phase boundaries the
theory has been generalized to Ginzburg-Landau theory by adding a term depending on
the gradient of the order parameter. Inspite of the success of lLandau and Ginzburg-
Landau theory in the systems mentioned above only 1ittle work has been done concern-
ing martensitic phase transitions. Difficulties arise from the fact that the defor-
mation of the unit cell does not coincide with the macroscopic strain. Consider-~
ations for overcoming this problem are discussed. It seems that even in the case of
martensitic phase transitions Landau theory may be used as a starting point to ob-
tain deeper insight into phenomena such as soft modes, nucleation, and the role of
lattice defects.

1. Introduction. - For more than five decades martensitic phase transitions have
been studied with growing effort. In the beginning the notion of martensite was de-
fined for ferreous alloys, namely steel. Later on phase transitions very similar to
the classical martensitic one were discovered in a lot of non-ferrous alloys too.
Today it seems that the transitions in non-ferreous alioys are more typical and
show the underlying principles more clearly. From the very beginning martensitic
phase transitions were the domain of metallurgists. Inspite of the high practical
significance in materials science and technology, physicists Tooked upon this type
of phase transitions in steels as dirty and unpromising. Instead phase transitions
such as liquid-vapour or ferromagnetic-paramagnetic were in vogue. Later the evo-
tution in both the areas took place rather independently.

In physics phase transitions were dealt with, in the beginning, by phenomenolo-
gical theories which simply describe the phenomena on a macroscopic scale contain-
ing many atoms. The first equation of state representing a phase transition was sug-
gested by van der Waals in 1873. In 1937 Landau established his famous theory of
second order phase transitions [1] which was extended by Devonshire [2,3] to first
order phase transitions in 1949. In order to deal with phase boundaries the pheno-
menological theories were generalized to Ginzburg-lLandau theory. Later on the micro-
scopic foundation of the theories mentioned above was pushed forward. From statis-
tical mechanics the phenomenological theories can be drived using the mean field
approximation neglecting fluctuations. In spite of this restriction the phenomeno-
logical theories are very successful in describing a 1ot of phase transition pheno-
mena. Nevertheless they were not applied to martensitic phase transitions until re-
cently, presumably because of a lack in collaboration between metallurgy and physics.

The aim of this paper is to give a survey both, of the phenomenological theories
of phase transitions and of their application to martensitic phase transitions. In
Chapter 2 we present the basic ideas of the phenomenological theories (Landau,
Devonshire, and Ginzburg-Landau theory). In Chapter 3 applications are discussed.
The last chapter deals with martensitic transitions and their description using
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the theories mentioned above. The specific problems as well as the possible scope
are outlined.

2. Phenomenological theories of phase transitions

2.1 Basic ideas

A phenomenological theory for a specific system is established in two steps.

The first step is to find a quantity, the order parameter e, characterizing the
phase transition that is the difference of both the phases. This problem is not a
trivial one requiring a deep insight into the particular phase transition. The order
parameter is an internal variable of the system. Examples can be found in Table 1.
In the beginning the notion "order parameter" was used for the magnetization in the
paramagnetic-ferromagnetic phase transition where, in the paramagnetic phase, the
spins are disordered whereas in the ferromagnetic phase the spins are parallel.
Later on the notion was used even in phase transitions not connected with order-
disorder phenomena. In martensitic phase transitions the order parameter is the
strain (see Chapter 4).

In the second step we determine the equations of state by constructing a free
energy f as a function of temperature T and order parameter e. From f(e,T) every
thermodynamic quantity can be calculated. Especially the order of the phase trans-
sition is fixed. It must be emphasized that one single free energy function repre-
sents both the phases.

Let us discuss the equilibrium. Without an external influence the equilibrium of
an isothermal system is given by the minimum of the free energy f with respect to
the order parameter. This condition yields 2af(e,T)/3e = 0. For convenience one de-
fines the quantity

o = af(e,T)/de

describing the energetic response of the system due to a changing internal state.
In equilibrium the order parameter adjusts in such a way that o vanishes. In the
martensitic case o is the stress. If there is an external influence the situation
changes. In an homogeneous system an external field & conjugated to the order pa-
rameter contributes to the free energy by -Ge. The physical significance of & has
to be determined for each particular phase transition (for examples see Table 1).
In this case the total free energy is given by

fa(e,T) = f(e,T) - Ge. (1)

As a consequence the equilibrium shifts, under the influence of an external field,
to the minimum of fg. This condition yields

o{e,T) =& (2)

which means that the external field is balanced by the internal response quantity.
Eq. 2 determines the equilibrium value of the order parameter as a function of the
external field and temperature.

2.2 Landau theory

Landau in his theory of second order phase transitions assumed the free energy to be
an analytic function of the order parameter and of temperature. Therefore he ex-
panded the free energy density function f, with respect to the order parameter e,
into a power series

f(e,T) = fo + Ae + Be2 + Ce3 + De4 + ...

where the coefficients are analytic functions of the temperature T. If e, as usual,
is chosen in such a way that the high temperature phase without external field
corresponds to vanishing e, then one must have a minimum of f at e =0 for T>T
and consequently A = 0. In order to get a second order phase transition at T. the
minimum of f must shift continuously for T<T.. Therefore B must change its sign at
Te with B>0 for T>T.. The simplest possibility to get this behaviour is

B = b(T-T¢) 0 <b = const.

c
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Furthermore one must have € =0 and D > 0. Landau assumed D to be constant. Con-
sequently the most simple free energy function showing a second order phase tran-
sition is obtained (Fig. la)

f(esT) = ,(T) + b(T-T ) + De* )
(3
b,D,TC >0 , const
f
T>Te Te T<Te
e
ITe T
Fig. la Landau free energy (Eq. 3) as Fig. 1b Equilibrium order parameter
a function of order parameter. {Landau theory) as a function

of temperature if there is no
external field. Second order
phase transition at T¢.

Let us discuss the consequences of Eq. 3 in the case of vanishing external field.
Fig. 1b shows the equilibrium value of the order parameter as a function of tempera-
ture following from Eq. 2. At high temperatures (T >T.) the order parameter vanishes..
If the temperature is lowered beyond T. the order parameter changes continuously.
However the derivative of e with respect to temperature jumps at T. indicating a se-
cond order phase transition. Two possibilities have to be d1st1ngu1shed Following
phys1ca1 arguments it may be that the order parameter cannot be negative. Then there
is only one minimum of f at each temperature. However, if the order parameter may
take pos1t1ve or negative values then there are, at low temperatures (T <T.), two
symmetric minima of the free energy. Since the absolute value of the order parameter
is the same for both the minima, the corresponding phases are identical differing
only in their orientation. Which orientation is present cannot be predicted. It may
happen that the system splits into domains of different orientation.

If there is an external field the situation changes considerably (Fig. 2a). To
begin with, consider the case where the external field is fixed whereas temperature
is changed. From Eqs. 2, 3 one obtains in equilibrium an e-~T curve plotted in
Fig. 2b. It s noticed that there is no phase transition at all. Under the influence
of the external field the order parameter differs from zero even at high temperature.
On cooling e gradually increases to approach the curve of vanishing field asympto-
tically.

Let us now discuss the case of fixed temperature and varying external field. By
minimizing fz (Egs. 2, 3, Fig. 3a) one gets the following cubic equation for the
equilibrium order parameter as a function of temperature and external field (Fig. 3b)

= 2(T-T )e + 4De (4)
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f5
T<Te T>Te T>Tc
| e
T<Tc
\\_&—
Ny e Te T
Fig. 2a Landau free energy under the Fig. 2b Equilibrium order parameter
influence of an external field (Landau theory) as a function of
G >0 as a function of the temperature under the influence
order parameter. of an external field & > 0. The
dashed curve corresponds to va-
nishing external field.
‘ —_— 6='0c
0<-0c
0=0
— ie
M e
/// Tc T >TC
|
|
o | Ao _
T e T T
\ | ¢
|
| |
///}
Fig. 3a Landau free energy as a func- Fig.3b Equilibrium value of the order

tion of order parameter for
different values of the exter-
nal field in the case T<T,

parameter (Landau theory) as a
function of the external field
for different temperatures. First
order phase transition for

T<T..
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At high temperatures (T >T.) the order parameter changes continuously with &. How-
ever, for T<T. a first order phase transition results. If the external field is
diminished the order parameter decreases toco. Even at vanishing field there is a
"remanence". Applying an external field in the opposite direction, the right mini-
mum of f5 vanishes only at -g.(T).With this field the phase becomes unstable and
therefore the system jumps into the left minimum of fz. In the range 0>&>-o. the
right minimum is lying at higher energy than the left one. Therefore the right phase
is only metastable. The equilibrium phase transition occurs at G = 0 where the
minima are of equal depth. If the field is reversed, the retransformation mustoccur
at least at o.. Therefore, one may get hysteresis in the field induced phase tran-
sition. The maximum vaTlue of the hysteresis is given by o.. However, Landau theory is
unable to predict the extent to which hysteresis does occur in reality.

The most important properties of phase transitions described by Eq. 3 are

1. The temperature~induced phase transition is of second order if the
external field vanishes. There is no hysteresis.

2. There is no temperature-induced phase transition if an external field
is applied.

3. The field-induced phase transition at T<T; 1is of first order and
is associated with hysteresis.

4. There is no field-induced phase transition at T>T..

2.3 Devonshire theory

Landau theory of second order phase transition has been successfully applied to
various systems such as ferro magnetic and ferroelectric materials. However, there
are other materials, such as the ferroelectric. BaTi03, which exhibit a temperature-
induced first order phase transition combined with hysteresis that is not covered by
Eq. (3). Devonshire [2,3] has established a thermodynamic theory for this kind of
phase transitions. To this end he looked for a free energy function complying with
the following requirements. At high temperatures the free energy should have one
minimum only at vanishing order parameter representing the high temperature phase.
At low temperatures, where only the second phase is stable, the free energy should
have a minimum at non-vanishing order parameter. At intermediate temperatures, the
free energy must have minima corresponding to both the phases. With the additional
assumption that the free energy should be an even function of the order parameter
Devonshire [2,3] ended up with the following ansatz (Fig. 4)

2 4

f(e.T) = £,(T) + A(T)e? - Be® + ce°

n

(5)
A(T) =a(T-T;) a, B, C, Ty >0 , const.

It should again be emphasized that one free energy function appiies to both the
phases. It may be noted that the minima corresponding to the low-temperature phase
do not continuously evolve from the high-temperature phase. On the contrary they
suddenly appear at

2
_ 1B
T2 = Tl + 3‘EC’> Tl‘
At T with
0 2
_ 18
T2 > T0 = Tl trac T1

the minima are of equal depth. In the range T2 >T>T, the low-temperature phase is
metastable, whereas in the range T >T>T; thé high-temperature phase is metastable.
At Ty the high-temperature phase becomes unstable. Because of symmetry the low-tem-
pera%ure phase exists 1in two orientations. The response of the system to a changing
order parameter is given by

3 5

o(e,T) = of/se = 2A(T)e-4Be” + 6Ce (6)
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Fig. 4 Devonshire free energy as a
function of order parameter
for different temperatures

(Eq. 5)

Fig. 5 Equilibrium order parameter (Devonshire theory) as a function of temperature
for different values of the external field G. First order phase transition
for & < o.. The dotted part of the curves bounded by the spinodal (dashed
curve) corresponds to unstable states decomposing into two phases. The dash-
dotted curve represents the locus of the equilibrium phase transition.
Critical point at T, oc.
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In equilibrium o has to be balanced by an external field § (Eq. 2) yielding the
equilibrium value of the order parameter as a function of T and §.
To begin with the case of fixed external field and varying temperature (Fig. 5)
may be discussed. Above
_ 16 |[g®
¢ s |

there is no temperature-induced phase transition. Changing temperature we gradually

alter the order parameter. At Ocs Tc’ e.
2
_ 3 B _ B
Te=T1*5 ¢ = \5C

there is a critical point. Below o one gets a temperature-induced first order phase
transition with hysteresis. The points on the dotted part of the e-T-curves bounded
by the dashed curve (spinodal, Fig. 5) obey the equilibrium condition (Eq. 2). How-
ever, they correspond to a maximum of the free energy. Therefore, they are unstable
points. For given values of the external field, the order parameter, and temperature
lying in this domain the system decomposes into two phases. To get the order para-
meter of both the phases only the e-values which correspond to the prescribed tempe-
rature on the solid branches of the e-T curve need be considered. Suppose, the high-
temperature phase is cooled in a fixed external field below o.. At the temperature
where the e-T-curve meets the dash-dotted curve the free energy of both the phases
is the same. Therefore, this point defines the equilibrium phase transition that is
the foremost possibility of the phase transition at all. On further cooling, the
high temperature phase becomes metastable getting unstable only at the beginning of
the dashed curve where the phase transition must occur at the latest (left arrow in
Fig. 5). The domain between the dashed and dash-dotted curve corresponds to metasta-
bitity. On heating the Tow-temperature phase retransforms at a temperature between
the equilibrium phase transition point and the right arrow (Fig. 5) where this phase
becomes unstable. As a consequence there is a hysteresis. Phenomenological theories
are not capable of predicting the extent to which hysteresis does occur in a real
system. They only give an upper Timit.

At the critical point (T., o¢) the region of coexisting phases ends. Therefore
the high temperature phase can be gradually converted into the Tow-temperature
phase without any phase transition by surrounding the critical point.

In addition to the temperature-induced phase transition there is a field-induced
phase transition. In Fig. 6 &-e-curves are plotted for different temperatures. The
interpretation of the curves in Fig. 5 and 6 is based on the same considerations.
Below Ty only the Tow temperature phase is stable. There is a first order field-
induced phase transition between both the orientations of this phase. In the range
To>T>Ty in addition to this type of transition there is a phase transition from
the high-temperature phase (large e) to the low-temperature phase (small e). In the
domain T.>T>Tp this latter transition is the only possible one, whereas above T¢
a field-induced phase transition cannot occur. It may be noticed that the stress-
strain curves of shape-memory alloys look very similar to the o-e curves in Fig. 6.
Therefore it may be supposed that Devonshire theory is appropriate for describing
martensitic phase transitions with the strain as order parameter. This is further
discussed in the last chapter.

The most important results of Devonshire theory thus are:

1. First order temperature-induced phase transition with hysteresis
below o¢.

2. First ogder field-induced phase transition between Tow and high
temperature phases in the range T.>T>T».

3. First order field-induced phase transition between different orien-
tations of the Tow temperature phase in the range T <Tj.

4. Existence of a critical point.
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3 T o
T>T. T=T. L<T<I,
e R e —_— ————S
0 - & ,(3
l T/<T<TO | 1
%<T<EJ- . tT<ﬂ
——>—F e / 1 e I e

]

Fig. 6 Equilibrium order parameter {Devonshire theory) as a function of external
field for different temperatures. The dotted part of the curves corresponds
to unstable states decomposing into different phases.

2.4 Ginzburg-Landau theory. - There are first order phase transitions in Landau as
well as in Devonshire theory. Connected with these first order phase transitions is
the existence of phase equilibrium. This means that at certain values of temperature
and external field different phases or different orientations of the same phase are
in equilibrium and may coexist in the same body showing a domain structure. At the
domain boundaries the order parameter changes rapidly. If this situation was treated
using Landau or Devonshire theory one would get domain walls of vanishing width and
vanishing energy which obviously is not correct. The reason for this result is that
a free energy depending on the order parameter is appropriate for situations only
where this quantity varies slowly. Dealing with domain boundaries the free energy
density must be modified by terms containing derivatives of the order parameter. It
appears that a gradient term is sufficient. However, this assumption can be con-
firmed by its success rather than by first principles. It may be concluded from sym-
metry arguments thatan order parameter gradient cannot occur linearly. The lowest
possible term is a quadratic one. For an isotropic system, the Ginzburg-Landau free
energy reads

FlesVe,T) = FylesT) + a(ve)? )

where fy is the Landau or Devonshire free energy (Eqs. 2, 5, H stands for homo-
geneous). o has to be positive. Otherwise the system could lower its energy inde-
finitely by creating an infinite number of domains.Usually itis sufficient to assume
a to be a positive constant (for particular systems, the references are cited in the
following chapter). The equilibrium of an isothermal system is given, in the absence
of an external field, by the minimum of
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Fiot = J fle(x),ve(x),T)av )

Since this condition determines the order parameter as a function of the position x,
the structure of domain walls follows. Especially their width is obtained. Inserting
the equilibrium structure e(x) into Eq. 8 results in the energy of a domain wall.

3. Application to specific systems. - The paramagnetic-ferromagnetic phase tran-
sition is a typical probTem for Landau theory. The order parameter and the corres-
ponding external field are the magnetization vector and the external magnetic field,
respectively. If both vectors are lying in one fixed direction they may be looked
upon as scalars. In this case the observed behaviour of ferromagnetic system is des-
cribed quite well by Eq. 3. The corresponding Landau free energy can be derived from
a microscopic Ising model using the mean-field approximation.

If the magnetization is not restricted to one direction then the situation is
more complicated [5]. Since there is an interaction between magnetism and the crys-
tal lattice (magnetostriction) the free energy must be modified by appropriate
terms. Additionally, the energy of the stray field must be included. On the basis of
a modified theory of Ginzburg-Landau type (micromagnetic equations) walls separating
differently oriented ferromagnetic domains have been treated [6]. Depending on the
dimension of the body different types of walls (Bloch or Ne&l walls) are obtained.
In addition, interaction phenomena between walls and crystal lattice defects have
been treated. The phenomenological theory proved jtself as a very useful tool in
dealing with problems of ferromagnetic baodies.

Another type of magnetic phase transition is the antiferromagnetic-paramagnetic
one. In the antiferromagnetic phase magnetic moments of neighbouring atoms located
on different sublattices are antiparallel. Therefore, there is no net magnetization.
The order parameter is the difference in the magnetization of both the sublattices.
The response is the "staggered field" which has no realization as an external field.
Therefore, antiferromagnetism is a typical example of a phase transition without
corresponding external field.

Devonshire [2,3] dealt with ferroelectric materials with the polarization as
order parameter. The response corresponding to an external field is the electric
field. According to the material second order or first order phase transitions are
observed. A typical example where Landau theory (Eq. 3) has been used is Triglycine
Sulfate whereas BaTi03 has been described by Devonshire theory (Eq. 5). Since ferro-
electric materials show electrostriction, an interaction energy containing lattice
deformation must be added. Details can be found in the book by Grindlay [7]. Basing
on a Ginzburg-Landau theory domain walls have been studied by Mitsui and Furuchi [8]
Ivanchik [9] and Bulaevskii [10].

In Table 1 various types of phase transitions which have been treated using
Landau, Devonshire, or Ginzburg-Landau theory are listed. A survey of Landau theory
and of its foundation by means of statistical mechanics can be found in [11].

4. Martensitic phase transitions. - Martensitic phase transitions are defined as
diffusionTess solid state structural phase transitions of first order with a defor-
mation of the lattice such that a macroscopic strain results [121. Occasionally the
first order condition is not included in the definition. The following concerns
alloys that exhibit pseudcelasticity, ferroelasticity, and shape memory effect as a
consequence of the martensitic phase transition {for a review on these effects, re-
fer [131).

Attempts have been made to describe martensitic phase transitions by means of
phenomenological theories. A Landau-type description of the Alb martensitic phase
transition has been given by Bhatt [141. The order parameter is the energy level of
electronic bands. The transformation strain results from a coupling term between
order parameter and strain. However, the microscopic background in the Al5 trans-
formation seems to be quite different from these in the systems considered here. For
cubic~tetragonal phase transformations Anderson and Blount [15], Axe and Yamada [161,
and Sakhnenko and Talanov [17] have presented a Landau description using the strain
as order parameter. Since this quantity is a tensor of the second rank, group theo-
retical arguments have been used to find appropriate combinations of the strain com-
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TABLE 1
phase order external type of
transition parameter field theory* reference
ferromagnetic magnetization magn.field L 44
M 6,35
G 6
antiferromagnetic  difference of none G 6,41
magnetizations
ferroelectric polarization electr.field L 2,3
D 2,3
G 8,9,10
liquid-vapour density pressure M 4
G 36,37,38
superconductive density of Cooper-  none G 39,40
pairs
structural displacement, none L,D 35
rotation
order-disorder lTong range order none L 42
G 43
martensitic strain stress see

Chap. 4

*
L Landau theory, D Devonshire theory, M Modified Landau or Devonshires theory,
G Ginzburg-Landau theory.

ponents obeying the required symmetry. Recently Kelly and Stobbs [18,19] have pro-
posed a Landau theory for g-phase alloys with the amplitude of charge density waves
serving as order parameter. They have introduced a coupling to phonon amplitudes as
well as to strain. However, there are no results concerning the thermodynamic con-
sequences of the model.

Whereas the above quoted papers start from a microscopic background, Ericksen
[20] has proceeded from theory of thermoelasticity. However, his paper is concerned
with continuous (second order) martensitic transformation which is not a realistic
simplification. Parry [21] starting from nonlinear theory of elasticity has deve-
toped a rather general theory of thermoelastic phase transitions. While attention is
given in his paper to unijversal properties of thermodynamic potentials describing
structural phase transitions and twinning, it does not, unfortunately, provide an
application to martensitic phase transition.

Looking at observed stress-strain curves of shape-memory alloys [13] a more direct
approach appears quite obvicus. A striking similarity to the curves in Fig. 6 is
noticed, showing the response quantity o as a function of the order parameter e for
various temperatures as derived from Devonshire theory (Eqs. 5, 6). This observation
has prompted the present author [22,23,24] to establish a one-dimensional model of
martensitic phase transitions where the shear strain and the shear stress were iden-
tified with the order parameter and response, respectively. Devonshire theory (Eq.5)
yields not only the observed stress-strain curves (ferroelasticity, pseudoelasticity)
but also shape-memory effect, lattice softening and so on. The author has developed,
based on the one-dimensional model, a Ginzburg-Landau theory which allows for trea-
ting static and moving domain walls between martensite variants as well as between
austenite and martensite [25]. The discrete version of the one-dimensional model
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stems from Suzuki and Wuttig [26] who have dealt numerically with nonlinear strain
waves which steepen to from martensitic nuclei. Generalizing the model to three di-
mensions the following two problems are met which necessarily arise in any pheno-
menological theory of martensitic phase transitions.

1. The combination of the components of the strain tensor to be used
as order parameter.
2. -The scale to be used in defining the relevant strain.

The first question can be answered by group theoretical arguments. The answer,
however, depends on the symmetry of the specific material. One must look for combi-
nations of the strain tensor components describing the transformation which are in-
variant with respect to the symmetry group of the high-temperature phase (being the
larger group). Whereas all the possible cases for second order phase transitions
have been given by Toledano [27], there are only preliminary results for first order
transitions [28].

The second problem concerning the scale of the relevant strain is a more diffi-
cult one. A possibility is to use the lattice deformation (Bain strain). However,
the lattice deformation usually does not coincide with the macrostrain for the
following reason. In a real crystal, martensite evolves from austenite in such a way
that, at least in an intermediate stage, plane martensite-austenite interfaces exist.
The interfaces must be invariant planes with respect to the macrostrain, which can
be obtained by twinning within martensite. This consideration led to the well-known
theories of Wechsler, Liebermann and Read [29]1, and Bowles and Mackenzie [301 rela~
ting the macrostrain to the lattice deformation. In a Ginzburg-Landau theory with
lattice deformation as order parameter, an austenite-martensite interface enforces
twinning by compatibility. However, if we deal with pure martensite, how can we let
know the theory that martensite must be twinned internally because of its history. A
way out of this dilemma could be to use the macrostrain as order parameter. Then the
lattice deformation does not enter the theory. Consequently, symmetry arguments must
refer to internally twinned martensite. The second problem concerning the appro-
priate scale is known, in statistical mechanics, as the rather general problem of
coarse graining [31]}. It does not occur if the twinning already is included in the
lattice strain. This, for example, is the case in the bcc - 9R transformation.

Let me end with some remarks about possible applications of Landau, Devonshire or
Ginzburg-Landau theory. To begin with, such a theory is a convenient phenomenological
description of the martensitic phase transition. It comprises a complete nonlinear
theory of thermoelasticity replacing the Tinear theory of elasticity which is in-
adequate for shape-memory alloys. A very promising application is the nucleation
problem. In both, homogeneous as well as heterogeneous nucleation, Landau or Devons-
hire theory could modify the present ideas [32]. In the vicinity of a nucleus stress
and strain concentrations of considerable amount can be expected. In the region of
elastic instability the linear theory of elasticity applied usually seems a very
poor approximation. A Landau-type theory has the advantage of yielding the whole
temperature dependent nonlinearity, which lowers the nucleation barrier. A similar
argument applies to heterogeneous nucleation on defects. The nonlinearity as well
as the huge anisotropy of the elastic response modify the stress field of dislo-
cations. Therefore their ability in favouring martensitic embryos may be increased
considerably. Nucleation along nonclassical paths including diffuse interfaces with
continuously changing strain [33] seems to be important in some systems (bcc - 9R,
fcc » hep, [32]1). In this case a Ginzburg-Landau theory 1is indispensable. The dis-
crete version of Suzuki and Wuttig [26] already has shown its value [34].

As has been demonstrated Landau, Devonshire, and Ginzburg-Landau theories are
promising approaches to a lot of problems concerning martensitic transformations.
Even a one-dimensional model reflects characteristic features of martensite. This
result encourages the development of a complete three-dimensional version of Ginz-
burg-Landau theory for martensitic phase transitions.
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