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PERTURBATIONS OF CLASSICAL ATOMS AND MOLECULES BY PERIODIC FIELDS

D. Richards

Mathematics Faculty, The Open University, Walton Hall, Milton Keynes MK7 644,
U.K.

Résumé.~ La théorie générale des systdmes classiques est bri&vement passée
en revue. L'effet de forces périodiques sur deux systimes complé&tement dis-—
tincts est &tudié en détail.

On consid&re tout d'abord, un atome d'hydrogéne classique dont on discute la
réponse & des champs &lectriques périodiques de diverses fréquences et ampli-
tudes. Quatre classes de comportement de 1'8lectron sont alors possibles.

Le second systéme considéré est celui de la rotation empé@chée dans les mo-—
lécules. On montre de quelle fagon la perturbation périodique affecte les
trajectoires résonnantes et comment le mouvement devient irrégulier lorsque
des résonances: sont trop proches.

Abstract. - The general theory of classical systems is briefly reviewed. The
effect of periodic forces on two distinctly different systems is studied in
detail.

First we consider a classical hydrogen atom in a periodic electric field and
discuss the response of the atom to fields of different frequency and
amplitude. The detailed motion of the electron is described and is
categorised into one of four types.

Next we consider a different type of system characteristic of hindered
rotations in molecules. It is shown how the periodic perturbation affects
resonant trajectories, and how irregular motion is produced when resonances
are too close.

1. Introduction. - Despite centuries of effort the behaviour of Hamiltonian
systems is still not properly understood and is a subject of intense activity.
Recent advances have beenmade by both analytic and computational studies, but the
systems of direct interest to the atomic physics community are so complex that
computations have so far been the most fruitful. However, these have necessarily
been on specific systems and generalisations are not yet possible.

In the not too distant past the Hamiltonians relevant to atomic and molecular
systems of interest were either integrable or so close to being integrable that
perturbation methods were applicable. For these systems the motion is well under-
stood and is the subject of the standard text books on analytic dynamics: we
summarise this theory in section 2 and 3. But intense electro-magnetic fields
produce systems described by Hamiltonians which are neither integrable nor close

to integrable, and the motion of such systems is qualitatively different from that
of integrable systems.

Here, I shall very briefly describe the effect of a periodic force acting on two
distinctly different systems in order to illustrate how different systems behave.
In section 4 we consider the ionisation of a hydrogen atom by a resonant electric
field and in section 5 we consider a model system having some characteristics of
a hindered rotator perturbed by a periodic force.
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2. Conservative Integrable systems. ~ A Hamiltonian system of N degrees of

freedom has a 2N~dimensional phase space, points in which are labelled by a pair of
conjugate variables (q,p) = (g ..-5QysP s--->P ). A motion of the system is
represented by a phase curve q,(t), p.(t), i = 1,...,N, usually parametrized by

the time t; for a bound conservative System with Hamiltonian H(gq,p), not depending
explicitly upon the time, this curve usually fills a (2N-1)-dimensional region of
phase space, as time tends to infinity. A system is said to be integrable if there
exist N independent integrals F,{(q,p) i = t,...,N satisfying the Poisson Bracket
relations: T

{H,Fi} =0, {Fi,Fj} =0 i3 = 1,2,...,N . (2.1)

The existence of these integrals means that each phase curve is confined to an
N-dimensional surface in phase space given by the intersection of the N (2N-1)-
dimensional surfaces Fi(gég} = constant i = t,...,N.

Further, if the motion in phase space is bounded then it can be shown (see for
example Arnold, 1978) that these surfaces are N-dimensional tori, so it is possible
to choose a set of conjugate variables (6,I), named angle-action variables, such
that each torus is labelled uniquely by the action variables I, and the position

on each torus is labelled uniquely by the values of the angle variables 6,

(mod 27) i = 1,...,N. The original variables (q,p) when expressed in terfis of the
angle-action variables will be multiply-periodic functions of 6:

q(I, 8 + 2ms) = q(I,8)

where s is an N-dimensional vector with integer components.

For a system of one degree of freedom the tori are simply closed one dimensional
curves of constant energy, shown in figure (2.1) for the linear oscillator. For a
system of two freedoms the four-dimensional phase space is filled with a set of
two~dimensional tori, showm schematically in figure 2.2.

Figure 2.1

Sketch of the invariant tori of the linear oscillator with Hamiltonian
H = p2/2m + mw2q2/2
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2.2 Sketch of the two-dimensional torus for a system of two degrees of freedom
showing the coordinates (91,62,11,12)

Because the motion lies on a torus, the actions I are constants and the Hamiltonian
in angle-action representation must be independent of 9,

H(g(e 1),p(e 1) = K(D), 2.2)
and from Hamilton's equation the angle variables vary linearly with time

S _ 9K _ _ _
ek = gik = mk(z) or ek = wk(z)t + ék’ k= 1,...,N. (2.3)

Here the w (I) is the frequency of the motion around the k'th cycle of the torus.
It is important to notice that these frequencies almost always depend upon the
actions: that is, with each torus is associated a different set of frequencies.

The last observation has a simple but, as we shall see,crucial consequence, easiest
to describe for system of 2 freedoms, but not restricted to these. The ratio of
frequencies R(I) = (E)/wz(z) for some values of I will be rational, R = s /s,

and for other values will “be irrational these are called proper tori. In the
former case the motion is periodic, with period 2ws K /w, and the phase curve does

not fill the torus: in the latter case the phase curve approaches arbitrarily close
to any given point on the torus. This is an important distinction between the two
types of tori, Since any real number can be approximated arbitrarily accurately

by a rational number any proper torus is arbitrarily close to a torus with rational
R even though the probability of picking out a "rational” torus at random is zero.

The best known examples of integrable systems are those with Hamiltonians which are
separable in some coordinate system (Q,P). Such Hamiltonians can be written as a
sum of N Hamiltonians all having one degree of freedom, so each sub-Hamiltonian is
separately conserved. Examples of such systems are central forces, Stark effect on
hydrogen atoms, Linear Zeeman effect on Hydrogen atoms, two fixed centres of
Coulomb force, a heavy symmetric top rotating about a fixed point, an asymmetric
top rotating about its centre of gravity.

The geometric picture given above is deceptively simple and is often complicated by

features present in the simplest of systems. An important example is given by the
Hamiltonian,

1 2
H(q,p) = Z P - a2 cos q, (A >0) (2.4)
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which describes the motion of a vertical pendulum, the hindered rotations of one
part of amolecule with respect to the remainder (see for example Townes and
Schawlow 1975) and is also an approximation wvalid in small regions by phase space
to the Hamiltonian of more complicated systems. It is in this context that we
shall meet it again in section 5. For the present discussion it is easiest to
visualise as the motion of a vertical pendulum with q the angle between the
pendulum and the downward vertical.

~alcosq

()
=

2.3 Sketch of the potential and phase curves for the Hamiltonian (2.4). The
dashed curve is the separatrix, s; the significance of regions I, 11 and III
is described in the text.

There are then three types of motion. First the small oscillations about q = O,
and second the rotational motion in which q(t) is always increasing or always
decreasing. These types of motion are seen in the phase curves of the Hamiltonian
shown in figure 2.3. The closed curves centred on 0, region II, correspond to
small oscillations: if the energy, W, of the system lies in the range

-a2 < W< a2 the motion is of this type. At higher energies W> a“, regions I and
III, the phase curves are not closed but are periodic with period 2y, as a
consequence of the periodicity of configuration space. Region I represents anti-
clockwise and region TIT clockwise motion.

The third type of motion separates these two periodic motiomns and is represented by
the dashed curve s in figure 2.3. We call s the separatrix and it represents motion
with energy E = a? vhich is just sufficient for the pendulum asymptotically to

reach the upward vertical: this is clearly an unstable motion and it is not
periodic,

In either of regions I, II or III angle-action variables can be found, equation 5.2,
but the angle-action variables of one region are unrelated to those of the other
regions.

Thus even for this simple system the phase space is divided into distinct regions
each with different types of motion so that the canonical transformation to angle-
action representation is discontinuous across the separatrix. A perturbation may
produce an arbitrarily large number of separatrixes in a bounded region of phase
space, see section 5, with the possible consequences that the differentiable
transformation to angle-action variables ceases to exist.
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3. Perturbations of Integrable systems. — Most systems are not integrable in the
sense described above and the general features of their behaviour are not generally
understood. In these circumstances it is natural to consider a slightly perturbed
integrable system,

H(q p) =H0(qp ) +eH1(q p) (3.1)

where H, is integrable and the perturbation €H, is "small". Then if the
perturbation is small enough there is an existence theorem due to Kolmogorov,
Arnold and Moser (see for example Arnold 1963, Arnold 1978), the KAM Theorem,
which guarantees that most of the original proper tori of Hy are only slightly
distorted by the perturbation. In practice the bounds on €H, imposed by this
theorem mean that it is not applicable in most interesting pLysical circumstances,
but numerical evidence suggests that the result holds for rather larger
perturbations, which are of physical relevance.

The KAM theorem is silent upon the fate of tori with rational frequency ratios,
andj;as we shall see in section 5,it is these that appear to cause many of the
difficulties. Briefly, on these tori the perturbation creates a separatrix
dividing the original torus into regions having different types of motion, exactly
like those occuring with the Hamiltonian (2.4). As there are an infinity of such
rational tori, and as each proper tori is arbitrarily close to a rational torus
the ensuing structure of phase space becomes very complex. For small perturbations
this complexity is contained, and most of phase space is filled with proper tori,
as the perturbation increases the effect of the rational tori becomes more
significant and eventually most proper tori disappear. This will be demonstrated
explicitly in section 5.

So far all discussion has concerned conservative systems. In the next two sections
we shall deal with systems for which the perturbation is periodic in time:

H(q,p,t) = Hy(q,p) + eH, (q,p,t)

H(q,p,t+T) = H(q,p,t). (3.2)
By introducing new conjugate variables 449 = t/T and Pysq and the new Hamiltonian
K = PN+1 + H(33253N+1) (3.3)

it is easily seen that the above remarks apply equally well to this periodically-
forced conservative system.

4, Hydrogen atom in an oscillating field. ~ The motion of an electron in a
combined Coulomb and uniform periodic electric field is very complicated and little
understood. But as both experiments (Bayfield and Koch 1974, also Bayfield 1979)
and numerical computations (Leopolod and Percival 1979, Mostowski and Sanche-
Mondragon 1979, Jones et al 1980) have been performed on this system, with
reasonable agreement, it affords a useful introductory example.

The model Hamiltonian for the system is

H= HC(E}B) + zF A(t) cos wt 4.1
where

H, = p2/2 - 1/r

is the unperturbed hydrogen atom Hamiltonian; A(t) is a switching function which
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adiabatically switches the oscillating field on and off (see Leopold and Percival
1979), introduced in order to approximate experimental conditions. Here we need
only note that A(t) increases slowly from zero to unity over many forcing periods,
remains at unity for many periods then decays slowly to zero (see figure 1 Leopold
and Percival 1979).

It is useful to define units of force and frequency appropriate to the unperturbed
motion. The unit of frequency is that of the unperturbed electron motion:

frequency: w . = (atomic unit)/n3 (4.2)

where n is the initial principal quantum number. Note that W is approximately
the frequency of transition between adjacent states:

War = (En+1

- En)Pﬁ (4.3)

En being the quantal emergy level. The unit of force is taken to be the mean

Coulomb force:

force: F.o= (atomic unit)/n4. (4.4)

Thus we can define two dimensionless parameters characterising the interaction

w = w/wat, F = F/Fat . (4.5)

The scale of F is set by the smallest field needed to produce any iogization in
the static limit (& = 0). Banks and Leopold (1978) find this to be ¥ = 0.13. For
time-varying fields ionization can occur at much lower levels of F, see figure 4.1.

The significant values of » will be seen to be & = 1. TFor small o the field
variation is adiabatic with respect to the electron motion and affects the atom as
if it were a static field. For large & the field oscillates many times during one
electron period producing a zero net effect.

The probabilities of ionization for various & and F are shown in figure (4.1). It
is seen that for small ¥ the most dramatic effects are for & = 0.8 and that as F
increases the significant range of w increases. A similar effect is seen in the
calculations of Martin and Wyatt (1982) and of Walker and Preston (1977).

This apparent simplicity masks the complexity of the mechanism producing ionization.
A more detailed study of the frequency response is shown in figure (4.2): here it
is seen that the ionization probability is a fairly complicated function of a,

and that it has a sharp dip at about . ® = 0.5. The reasons for this are not known.

Further analysis of the trajectories shows that each classical trajectory can be
classified into one of four classes which are

C1 Trajectories on tori, which probably never ionize;

C2 Trajectories that ionise rapidly;

C3 Trajectories passing through one or more extremely highly excited (EHE) states
with relatively sudden transitions between them before ionizing; and

C4 Trajectories which pass through a sequence of EHE states but do not iomise
during the time of computation. These would probably ionise eventually.
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log w/fwy

Three dimensional plot showing the percentage ionization, vertical scale, as a
function of both frequency and amplitude. The Monte-Carlo method used to
generate these results is described by Leopold and Percival 1979: it is this
method which produces the statistical errors shown by the error bars.
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4.2 Percentage ionization as a function of w/w 5, for F = 0.08 Fa(
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The differences between these types of trajectories are clearly seen in the time
dependence of the compensated energy Ec(t). This compensated energy allows for the
oscillation produced by the field: in the absence of the Coulomb field the

velocity of the electron is

v=v, - F 2 sin wt, (4.6)
¥ e 2

¥ being a constant vector, so the compensated energy is defined as

&.7)

=

_m 2 2 F . 2
Ec(t) = 5'[vx + vy + (vz + ™ sin wt)

When the Coulomb field is weak E (t) is almost constant and is approximately the
mean kinetic energy of the electFon over one oscillation. When Ec >0
ionization is assumed to have occurred.

IR

-0:08 4
i
-0161
-0
Ee

-0324

-040

e e

-0484
4

-0561

i

J Rapid ionisation (C2)

4.3 EC against time for an ionised trajectory.

In figure 4.3 is shown the compensated energy for a C2 type trajectory. In figure
4.4 a C1 type of trajectory is given. Here we see that E_ oscillates around the
initial energy. When the field is turned off adiabatically, E_ becomes the actual

total energy which is nearly the same as the initial energy. This is an example
of an invariant torus, which does not ionise. . In figure 4.5 before E_ becomes
positive and constant (ionization) it is for some time negative and constant,

When the positions and velocities are checked we find that the electron moves
slowly in a very large Kepler ellipse, with wobbles due to the external field.
The period of revolution is proportional to
E -3/2.
c

The electron is in an extremely highly excited (EHE) state.
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-0:28¢

-032

-0364

Invariant torus (C1)

4.4 EC against time for an invariant torus type of trajectory.

-004

- H

-0204

-0b4d

Ionisation via EHE (C3)

4.5 E, against time for a trajectory which ionises via some stable EHE states.

If the field is turned off adiabatically during the time the electron is in an EHE
state like in figure 4.6 the total energy remains negative and constant resulting
in a final EHE state.

The behaviour shown in these graphs can be understood qualitatively. 1In the
absence of a field the electron moves in an elliptical orbit with characteristic
binding energy and frequency. In the absence of the proton the electron moves
uniformly in the mean but imposed on this uniform motion is a sinusoidal
oscillation (equation 4.6) with characteristic mean kineatic energy and frequency.
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In neither case does the electron lose or gain energy in the mean. But when both
proton and field act together the interesting things happen, and the electron

can gain or, more rarely, lose energy. The particular type of phenomena which occur
depend on the frequency ratio and energy ratio for the proton and field.

Final EHE state (C&4)

4.6 EC against time for a trajectory in a final EHE state.

As discussed above, if the field frequency is too small or too large little of
interest happens. But for & near unitymore interesting effects occur. 1In the
first type (C1, figure 4.4) the trajectory appears to be an invariant torus in
phase space and on this trajectory there is no effective energy transfer; the
motion is made up of sinusoidal compoments and is said to be multiply periodic.
The electron never goes very much further from the proton than when it was in the
original elliptical orbit, in the absence of the field.

In the second type (C2, figure 4.3) the oscillating field and the proton work
together in the early stages of the full strength field, and after relatively few
oscillations the electron is ionized. These are probably the initially more
eccentric orbits.

In the more interesting third and fourth types the electron gains energy in the
early stages as in the second type, but not enough to ionize. It moves away from
the proton into an elliptical orbit upon which are superimposed the sinusoidal
oscillations of the field. The orbit is eccentric, often highly eccentric, with
its perihelion at a similar distance from the nucleus to a, the initial and semi-
major axis, and its aphelion many times further away. The calculations show that
compensated energy is very stable in the outer ranges of these orbits, near the
aphelion, and indeed anywhere on the orbit which is significantly further from the
proton than a. The sudden changes in energy illustrated in figures 4.4, 4.5, 4.6
takes place when the electron is near the perihelion. The time between these
sudden changes is approximately proportional to

E—3‘2,
c

This is what would be expected from our interpretation. Notice that the weaker
the binding, the more stable the atom is in the presence of the oscillating field.
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Each time the electron approaches perihelion it changes its orbit. It may
occasionally ionize, or it may be excited to an even more highly excited state,
or, more rarely, to a less excited state. As time goes om, those atoms which have
not ionized, and whose electron trajectories are not on invariant tori, reach
higher and higher excited states or EHE states.

The EHE orbits are remarkably stable in the presence of the field. They have
frequencies which are very much lower than the field frequency, the opposite of
adiabatic, so the orbit has very many sinusoidal oscillations imposed on its basic
elliptical shape. Their lifetime is given by the

E—3/2
c

law, so we find that atoms can be relatively stable in the presence of oscillating
electric fields, even if the magnitude of those fields is many times the magnitude
of the static field required to produce Stark iomization.

The third and fourth types of orbit are distinguished only by the fact that for the
third type ionization does eventually take place during the period considered
whereas in the fourth type it does not. It is probable that any orbit of the
fourth type would eventually ionize.

This qualitative description of the trajectories shown in figures 4.3 to 4.6
provides a clue to the features required in any approximate analytic theory. At
present there is no simple theory which will satisfactorily predict the results
produced by these numerical calculations. For this reason we turn to a simple
system in order to understand better the complexities of the dynamics.

5. A periodically forced system of one degree of freedom. — A simpler system which
has received some attention (Rechester-and Stix 1979, Escande and Doveil 1981,

see also Chirikov 1979 and references therein) is the Hamiltonian (2.4) perturbed

by a potential periodic in space and time:

H(q,p,t) = p2 - cos g + £ cos(Ag - Qt) (5.1)

Noj =

which may be taken to represent a hindered rotator or a vertical pendulum acted upon
by a time-varying field.

The phase curves of the unperturbed motion, € = 0, are shown in figure 2.3, 1In
order to analyse the effects of the perturbation it is easiest to work with the
angle~action variables of the unperturbed system:

2 [Y4
I== dq Y2(W ~ cos q) cos q, = W,
L 1
=8 NS 2
=5 kO - k)5 k (1 +wy/2, Jul <1 (5.2)
1 w
I= T J dq V2(W - cos q)
-
- B KW=/ -1, |wl o> (5.3)
Wk1 1 1 > . :

w@ere W is the energy and K(k) and E(k) are complete elliptic integrals and of the
first and second kind respectively. The relation between the energy and action and
frequency and action are shown graphically in figure 5.1. The most important

aspect of the frequency relation is the rapid decrease to zero as W > 1: more
precisely
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w = w/2K(k)
z n/zn(-r-fz—w), W<t (5.4)
Nl.()

6.8

0.6

0.4

0.2

i 1 i
-3 0 0.8 10
Energy, W

Fig. 5.1

The unperturbed motion is particularly easy to understand because the phase space

is two dimensional and the phase curves easy to draw. The perturbation spoils this
simplicity by introducing another dimension, time, so we need an alternative method
of representing the solution. One of the most convenient techniques is to look

at (q(t),p(t)) at regular intervals equal to the period of the forcing term, that

is to view the system using a stroboscope of the same frequency as the forcing term.
Then we see a set of points

(agsp ) = (a(t)ple,)) t, = 2ms/Q, s = 0,1,... (5.5)

which can be plotted as a sequence in the two dimensional (gq,p) phase space.

Clearly the phase point (qs+1,ps+1) is uniquely determined by the previous phase
point (q_,p ):

s’Fs
) = Flqgspy)- (5.6)

(qs+1’ps+1

It can also be shown that because the original system is Hamiltonian the mapping
(5.6) is area-preserving.

If this technique is applied to the unperturbed problem each sequence with a given
energy W lies on the appropriate phase curve of figure 2.3. If the ratio w(W)/Q
is irrational tHe sequence of points will eventually £ill the phase curve, but if
w/Q is rational, r/s say, then after s periods the sequence will repeat itself,
that is the mapping is periodic with period s:

(ag>p ) = (a45p() (w/Q = r/s). (5.7)
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The perturbation to the original Hamiltonian causes a perturbation to the mapping

(5.6), and no matter how small this perturbation is its effect is very
complicated.

Consider a perturbation of the trajectory for which w/Q = r/s, so that there are
s unperturbed fixed points (q, p.), 1 = 0,1,...,8 - 1, then a general theorem
(Arnold and Avez 1968 section120} shows that for sufficiently small perturbations,
and some k, 2ks fixed points are produced and that half these are stable and half
unstable.

- T ---"-.
:.;:.- - / \- __-...-
e ~
5 V' A

£
£ &
& &
r £
- . & &
. . I o~
- > P =~
T . L -~
'-.__ ... -~ =

oo e

Stroboscopic plot of the unperturbed system, € = 0., Three trajectories are
shown; the five distinct dots is the trajectory with w = 4/5:

these are
surrounded by closed curves of larger and smaller frequency (smaller and
larger energy).

This behaviour is seen clearly in figures 5.2 and 5.3.
shows the unperturbed trajectory with w

The first of these figures
4/5 and two neighbouring trajectories:
the second shows the effect of the perturbation on these trajectories, and here

the five stable fixed points are clearly seen; remember that all of these points
are obtained from a single trajectory.

Surrounding these fixed points are small
"islands"; only one trajectory producing the islands is shown in figure 5.3.

The
trajectories forming these islands behave qualitatively differently from any of the
unperturbed trajectories. On the other hand the inner and outer trajectories shown
in figure 5.3 are qualitatively similar to the unperturbed trajectories shown in
figure 5.2.

In figure 5.3 five stable fixed points are shown and the five unstable fixed points
are not shown although their approximate position is clear.

Neither is the
separatrix passing through these unstable fixed points shown. When these

features are included the local structure of the phase curves looks very
similar to that of the unperturbed pendulum figure 2.3.
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"~ ——
e e

5.3 Diagram showing the effects of a small perturbation, € = 0.1, on trajectories
near those of figure 5.2. A total of four trajectories is shown; one,
producing the five dots, has a perturbed frequency of 4/5, surrounding these
dots are five islands produced by a meighbouring trajectory. Surrounding
these islands are two trajectories similar to those of the unperturbed
trajectories of figure 5.2.

Now consider a more detailed analysis of the perturbation. In angle-action
representation the perturbation may be written as the Fourier series

cos(rg - 9t) = Vn(I) cos(né - Qt + a) (5.8)
n

iun 1 m .
Vn(I)e o {—“ de exp i(xq(6) - né) (5.9)

so that the full Hamiltonian is

H=Hy(I) +¢ E V_(I) cos(nd - 0t + o). (5.10)

Then the equatiors of motion are

" dv

= - M -
6 = w(l) + ¢ E 5 cos{n® - Qt + mn) (5.11)
I=c¢ Z n Vn(I) sin(nd - Qt + an).

n
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A straightforward perturbative solution is

an sin((nw(IO) -t + a * neo)

0 = w(It + 8, + Izlﬁ; iy =0 (5.12)
cos((nw(I.) - Dt + a_ + nbd,.)
_ _ 0 n 0
IT=1 -¢ rzl nVn(IO) (5.13)

nw(IO) -Q

where (GO,IO) are the initial values of (6,1). Clearly if Inw(Io) ~ Q| is not
small for any n this simple solution is reasonably accurate and we
should expect the phase curves to be only slightly perturbed. But for those
phase curves for which nw(I.) = Q for some n this expansion is invalid. Note
that in this case the unpergubed mapping is periodic with period n.

Now concentrate on the perturbation to an unperturbed motion with action
I= Im where

m m(Im) = Q. (5.14)

Then if I_ is not too close to I all terms in the sum of equation (5.10)
other than n = m will be rapidly varying and, as in the Rotating-wave
approximation (see for example Knight and Milonni 1980), may be ignored to
give

H = R(0,I,t) = HO(I) + £ Vm(I)cos(mB - Qt + am). (5.15)

This time dependent Hamiltonian can be converted to a time independent
Hamiltonian by using the canonical transformation

- ce-2t . %
J=I1 =0 -TF (5.16)
which gives
K(6,3) = B (1) - L+ ¢ V_(3) cos mo (5.17)
’ 0 m m .

But since I is close to Im we put
J=1 +P (5.18)
and assume P small. Then to within an irrelevant additative constant
K(¢,P) = 1 w' (T )P2 + ¢V (1) cos md. (5.19)
2 m m m

The justification for ignoring higher terms in this expansion will become clear
soon.
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5.4 Sketch of the phase curves for the Hamiltonian (5.19). Here VP and Q
are interpreted as polar coordinates.

The Hamiltonian (5.19) is similar to that of the vertical pendulum, equation 2.4, the
main difference being that ® is replaced by m¢, so that for ¢ € (0,2m) there are 2m
fixed points, at ¢ = r"/m r = 0,1,..., (2m=1), p = 0: half of these are stable
around which (¢,P) executes small oscillations. In between these are the m unstable
fixed points jointed by separatrixes. Outside the separatrixes the motion is

similar to the unperturbed motion. In the case m = 5 this is shown schematically

in figure 5.4 in which VP and ¢ are treated as polar coordinates. The maximum
distance separating the separatrixes is

AP = 4Ve |Vm/w6|. (5.20)

The motion in the original (8, I) representation is easily obtained from figure (5.4)
by noting that (5.16) is equivalent to transformation to a reference frame rotating
with angular speed ©/m. Thus our stroboscope will pick out the values of 6,

- _ 2ms =
SS = ¢(ts) P tS 2ns /9. (5.21)

That is, each successive time that the system is lit up we see motion around
adjacent fixed points in the (¢,P) representation.

This quite simple analysis satisfactorily explains the behaviour shown in figure
5.3,

Ig figure 5.5 is shown the effect of the perturbation of a librating trajectory at
higher energies. 1In this figure seven trajectories are shown: the inner four are
the same as shown in figure 5.4. The outer curve corresponds to an unperturbed
rotational motion, and the islands underneath it belong to a set of fixed points in
the rotational region. The unstructured sequence of dots all belong to a single
trajectory: this sequence does not lie on any simple curve and clearly the
trajectory producing this sequence is of a different kind to any previously
encountered. It is named an irregular trajectory (Percival 1973).
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5.5 Stroboscopic plot showing an irregular trajectory of the Hamiltonian (5.1)

For this irregular trajectory the previous analysis is invalid as the assumption
that neighbouring resonant terms do not interfere is invalid. From figure 5.1 it

can be seen that as m increases the difference Im+1 = Im decreases rapidly. 1If
_ - — IRV e
LI I separatrix width = 2ve IVm mol (5.22)

then the Hamiltonian (5.15) is no longer a resonable approximation to the system.
Of course as m increases |V,| decreases, but the numerical work of Rechester and
Stix (1979) shows that at m = 6 equality (5.22) holds. It is the overlapping of
these resonant terms which causes the break-up of the tori (see from example
Chirikov 1979) and the condition (5.22) gives an approximate criterion for the
destruction of the invariant tori.

When condition (5.22) is satisfied the full Hamiltonian may be approximated
satisfactorily by including both the n = m and n = m + 1 resonant tori, This
Hamiltonian is not integrable, but the more sophisticated renormalisation methods of
Escande and Doveil (1981) may be used to give a more accurate criterion of the onset
of chaos.
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