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PERTURBATIONS OF CLASSICAL ATOMS AND MOLECULES BY PERIODIC FIELDS 

D. Richards 

Mathematics Faculty, The Open University, Walton Hall, Milton Keynes MK7 6AA, 
U.K. 

Résumé.- La théorie générale des systèmes classiques est brièvement passée 
en revue. L'effet de forces périodiques sur deux systèmes complètement dis­
tincts est étudié en détail. 
On considère tout d'abord, un atome d'hydrogène classique dont on discute la 
réponse à des champs électriques périodiques de diverses fréquences et ampli­
tudes. Quatre classes de comportement de l'électron sont alors possibles. 
Le second système considéré est celui de la rotation empêchée dans les mo­
lécules. On montre de quelle façon la perturbation périodique affecte les 
trajectoires résonnantes et comment le mouvement devient irrégulier lorsque 
des résonances sont trop proches. 

Abstract. - The general theory of classical systems is briefly reviewed. The 
effect of periodic forces on two distinctly different systems is studied in 
detail. 
First we consider a classical hydrogen atom in a periodic electric field and 
discuss the response of the atom to fields of different frequency and 
amplitude. The detailed motion of the electron is described and is 
categorised into one of four types. 
Next we consider a different type of system characteristic of hindered 
rotations in molecules. It is shown how the periodic perturbation affects 
resonant trajectories, and how irregular motion is produced when resonances 
are too close. 

1. Introduction. - Despite centuries of effort the behaviour of Hamiltonian 
systems is still not properly understood and is a subject of intense activity. 
Recent advances have been made by both analytic and computational studies, but the 
systems of direct interest to the atomic physics community are so complex that 
computations have so far been the most fruitful. However, these have necessarily 
been on specific systems and generalisations are not yet possible. 

In the not too distant past the Hamiltonians relevant to atomic and molecular 
systems of interest were either integrable or so close to being integrable that 
perturbation methods were applicable. For these systems the motion is well under­
stood and is the subject of the standard text books on analytic dynamics: we 
summarise this theory in section 2 and 3. But intense electro-magnetic fields 
produce systems described by Hamiltonians which are neither integrable nor close 
to integrable, and the motion of such systems is qualitatively different from that 
of integrable systems. 

Here, I shall very briefly describe the effect of a periodic force acting on two 
distinctly different systems in order to illustrate how different systems behave. 
In section 4 we consider the ionisation of a hydrogen atom by a resonant electric 
field and in section 5 we consider a model system having some characteristics of 
a hindered rotator perturbed by a periodic force. 
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2. Conservative Integrable systems. - A Hamiltonian system of N degrees of 
freedom has a 2N-dimensional phase space, points in which are labelled by a pair of 
conjugate variables (9,g) = (q ...,qN,p,,...,p N). A motion of the system is 
represented by a phase curve q? (t), p. (t), i = 1,. . . ,N, usually parametrized by 
the time t; for a bound conser$ative Bystem with Hamiltonian H ( ~ , E ) ,  not depending 
explicitly upon the time, this curve usually fills a (2~-1)-dimensional region of 
phase space, as time tends to infinity. A system is said to be integrable if there 
exist N independent integrals Fi(l,p) i = 1, ..., N satisfying the Poisson Bracket 
relations: 

The existence of these integrals means that each phase curve is confined to an 
N-dimensional surface in phase space given by the intersection of the N (2N-1)- 
dimensional surfaces F.(q,p) = constant i = 1 ,  ..., N. 

1 - -  

Further, if the motion in phase space is bounded then it can be shown (see for 
example Arnold, 1978) that these surfaces are N-dimensional tori, so it is possible 
to choose a set of conjugate variables (;,I), named angle-action variables, such 
that each torus is labelled uniquely by the action variables I, and the position 
on each torus is labelled uniquely by the values of the angleYvariables 8 .  
(mod 2i~) i = 1,. . . ,N. The original variables (1,~) when expressed in terks of the 
angle-action variables will be multiply-periodic functions of 8: 

where is an N-dimensional vector with integer components. 

For a system of one degree of freedom the tori are simply closed one dimensional 
curves of constant energy, shown in figure (2.1) for the linear oscillator. For a 
system of two freedoms the four-dimensional phase space is filled with a set of 
two-dimensional tori, shown schematically in figure 2.2. 

Figure 2.1 

Sketch of the invariant tori of the linear oscillator with Hamiltonian 
H = p2/2m + rndq2/2 



2.2 Sketch of the two-dimensional torus for a system of two degrees of freedom 
showing the coordinates (0 8 I I ) 

1' 2' 1' 2 

Because the motion lies on a torus, the actions I are constants and the Hamiltonian 
in angle-action representation must be independent of ;, 

and from Hamilton's equation the angle variables vary linearly with time 

aK 
0 = -  aIk = w  k -  (I) or Ok = w (1)t + St, k = 1,. ..,N. k - (2.3) 

Here the wk(I) is the frequency of the motion around the k'th cycle of the torus. 
It is important to notice that these frequencies almost always depend upon the 
actions: that is, with each torus is associated a different set of frequencies. 

The last observation has a simple but, as we shall see,crucial consequence, easiest 
to describe for system of 2 freedoms, but not restricted to these. The ratio of 
frequencies R(I) = w (I)/w (I) for some values of I will be rational, R = s Is2, 
and for other ~alueslw~ll 'b~ irrational these arecalled proper tori. In the 
former case the motion is periodic, with period 2ns /wl and the phase curve does 

1 not fill the torus: in the latter case the phase curve approaches arbitrarily close 
to any given point on the torus. This is an important distinction between the two 
types of tori. Since any real number can be approximated arbitrarily accurately 
by a rational number any proper torus is arbitrarily close to a torus with rational 
R even though the probability of picking out a "rational" torus at random is zero. 

The best known examples of integrable systems are those with Hamiltonians which are 
separable in some coordinate system (Q,P).  Such ~amiltonians can be written as a 
sum of N Hamiltonians all having one Tegree of freedom, so each sub-Harniltonian is 
separately conserved. Examples of such systems are central forces, Stark effect on 
hydrogen atoms, Linear Zeeman effect on Hydrogen atoms, two fixed centres of 
Coulomb force, a heavy symmetric top rotating about a fixed point, an asymmetric 
top rotating about its centre of gravity. 

The geometric picture given above is deceptively simple and is often complicated by 
features present in the simplest of systems. An important example is given by the 
Hamiltonian, 

1 2 
~(q,p) = p2 - a cos q, (A > 0 )  (2.4) 
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which describes the  motion of a v e r t i c a l  pendulum, the  hindered ro ta t ions  of one 
p a r t  o famolecu le  with respect  t o  the remainder (see f o r  example Townes and 
Schawlow 1975) and i s  a l s o  an approximation v a l i d  i n  small regions by phase space 
t o  t h e  Hamiltonian of more complicated systems. It i s  i n  t h i s  context t h a t  we 
s h a l l  meet it again i n  sec t ion  5 .  For the present  discussion it i s  e a s i e s t  t o  
v i s u a l i s e  as  the  motion of a v e r t i c a l  pendulum with q the  angle between the 
pendulum and the  downward v e r t i c a l .  

2.3 Sketch of t h e  po ten t ia l  and phase curves f o r  the ~ a m i l t o n i a n  (2.4).  The 
dashed curve i s  t h e  separa t r ix ,  s ;  t h e  s ignif icance of regions I,  I1 and I11 
i s  described i n  the t e x t .  

There a r e  then th ree  types of motion. F i r s t  t h e  small o s c i l l a t i o n s  about q = 0, 
and second the r o t a t i o n a l  motion i n  which q ( t )  i s  always increasing o r  always 
decreasing. These types of motion a r e  seen i n  the  phase curves of the Hamiltonian 
shown i n  f igure  2.3. The closed curves centred on 0, region 11, correspond t o  
small o s c i l l a t i o n s :  i f  the  energy, W ,  of the  system l i e s  i n  the range 
-a2 < W < a2 the  motion i s  of t h i s  type. A t  higher energies  W > a2, regions I and 
111, the  phase curves a r e  not closed but a r e  periodic  with period 2 ~ ,  a s  a 
consequence of the  per iod ic i ty  of configurat ion space. Region I represents  an t i -  
clockwise and region I11 clockwise motion. 

The t h i r d  typeofmotion separates  these two periodic  motions and i s  represented by 
the dashed curve s i n  f igure  2.3. We c a l l  s the  separa t r ix  and i t  represents  motion 
with energy E = a2 which is  j u s t  s u f f i c i e n t  f o r  the pendulum asymptotically t o  
reach the  upward v e r t i c a l :  t h i s  i s  c l e a r l y  an unstable  motion and it i s  not 
per iodic .  

I n  e i t h e r  of regions I, I1 o r  111 angle-action var iab les  can be found, equation 5.2,  
but the  angle-action var iab les  of one region a r e  unrelated t o  those of the o ther  
regions. 

Thus even f o r  t h i s  simple system the phase space i s  divided i n t o  d i s t i n c t  regions 
each with d i f f e r e n t  types of motion so t h a t  the canonical transformation t o  angle- 
ac t ion  representat ion i s  discontinuous across  the  separa t r ix .  A per turbat ion may 
produce an a r b i t r a r i l y  l a rge  number of separa t r ixes  i n  a bounded region of phase 
space, see sec t ion  5,  with t h e  possible  consequences t h a t  the  d i f f e r e n t i a b l e  
transformation t o  angle-action var iab les  ceases t o  e x i s t .  



3 .  Perturbat ions of In tegrab le  systems. - Most systems a r e  not  in tegrab le  i n  the  
sense described above and the general fea tures  of t h e i r  behaviour a r e  not general ly  
understood. I n  these circumstances it i s  na tura l  t o  consider a  s l i g h t l y  perturbed 
integrable  system, 

where Ho i s  in tegrab le  and t h e  perturbat ionEH1 is  "small". Then i f  the  
perturbat ion i s  small enough there i s  an exis tence theorem due t o  Kolmogorov, 
Arnold and Moser (see f o r  example Arnold 1963, Arnold 19781, the  KAEf Theorem, 
which guarantees t h a t  most of the o r i g i n a l  proper t o r i  of Ho a r e  only s l i g h t l y  
d i s t o r t e d  by t h e  perturbat ion.  I n  p rac t ice  the  bounds onEH imposed by t h i s  
theorem mean t h a t  i t  is  not appl icable  i n  most i n t e r e s t i n g  physical  circumstances, 
but numerical evidence suggests t h a t  the  r e s u l t  holds f o r  r a t h e r  l a rger  
perturbat ions,  which a r e  of physical  relevance. 

The KAM theorem i s  s i l e n t  upon the  f a t e  of t o r i  with r a t i o n a l  frequency r a t i o s ,  
and,as we s h a l l  see i n  sec t ion  5 , i t  i s  these t h a t  appear t o  cause many of t h e  
d i f f i c u l t i e s .  Br ie f ly ,  on these t o r i  the  perturbat ion c rea tes  a  separa t r ix  
dividing t h e  o r i g i n a l  torus in to  regions having d i f f e r e n t  types of motion, exact ly 
l i k e  those occuring with the  Hamiltonian (2.4) .  As there  a r e  an i n f i n i t y  of such 
r a t i o n a l  t o r i ,  and a s  each proper t o r i  i s  a r b i t r a r i l y  close t o  a  r a t i o n a l  torus 
the ensuing s t r u c t u r e  of phase space becomes very complex. For small per turbat ions 
t h i s  complexity i s  contained, and most of phase space i s  f i l l e d  with proper t o r i ,  
a s  t h e p e r t u r b a t i o n i n c r e a s e s  the e f f e c t  of the r a t i o n a l  t o r i  becomes more 
s i g n i f i c a n t  and eventual ly most proper t o r i  disappear. This w i l l  be demonstrated 
e x p l i c i t l y  i n  sec t ion  5. 

So f a r  a l l  discussion has concerned conservative systems. I n  t h e  next two sec t ions  
we s h a l l  dea l  with systems f o r  which the  perturbat ion i s  per iodic  i n  time: 

By introducing new conjugate var iab les  q = t / T  and pN+l and the  new Hamiltonian 
n+ I 

it i s  e a s i l y  seen t h a t  t h e  above remarks apply equally well t o  t h i s  per iodical ly-  
forced conservative system. 

4 .  Hydrogen atom i n  an o s c i l l a t i n g  f i e l d .  - The motion of an e lec t ron  i n  a  
combined Coulomb and uniform periodic  e l e c t r i c  f i e l d  i s  very complicated and l i t t l e  
understood. But a s  both experiments (Bayfield and Koch 1974, a l s o  Bayfield 1979) 
and numerical computations (Leopolod and Percival  1979, Mostowski and Sanche- 
Mondragon 1979, Jones e t  a1 1980) have been performed on t h i s  system, with 
reasonable agreement, i t  a f fords  a useful  introductory example. 

The model Hamiltonian f o r  the  system i s  

where 

i s  the unperturbed hydrogen atom ~ a m i l t o n i a n ;  A(t) i s  a  switching funct ion which 
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a d i a b a t i c a l l y  switches  t h e  o s c i l l a t i n g  f i e l d  on and o f f  ( see  Leopold and P e r c i v a l  
1979), in t roduced i n  o rde r  t o  approximate exper imental  cond i t ions .  Here we need 
only  n o t e  t h a t  A( t )  i n c r e a s e s  s lowly from zero t o  u n i t y  over many f o r c i n g  pe r iods ,  
remains a t  u n i t y  f o r  many pe r iods  then  decays slowly t o  zero ( see  f i g u r e  1 Leopold 
and P e r c i v a l  1979). 

It i s  u s e f u l  t o  d e f i n e  u n i t s  of f o r c e  and frequency appropr ia t e  t o  t h e  unperturbed 
motion. The u n i t  of frequency i s  t h a t  of t h e  unperturbed e l e c t r o n  motion: 

frequency: w = (atomic u n i t ) / n  
3 

a t  (4.2) 

where n i s  t h e  i n i t i a l  p r i n c i p a l  quantum number. Note t h a t  w i s  approximately 
t h e  frequency of t r a n s i t i o n  between ad jacen t  s t a t e s :  

a t  

E being t h e  quanta1 energy l e v e l ,  The u n i t  of fo rce  i s  taken t o  be t h e  mean 
n 

Coulomb fo rce :  

4 force:  Fat = (atomic u n i t ) / n  . (4.4) 

Thus we can  d e f i n e  two dimensionless parameters c h a r a c t e r i s i n g  t h e  i n t e r a c t i o n  

w = U / U  G = F / F , ~  a t '  

The s c a l e  of 3? i s  s e t  by t h e  smal l e s t  f i e l d  needed t o  produce any i o n i z a t i o n  i n  
t h e  s t a t i c  l i m i t  (Cj = 0). Banks and Leopold (1978) f i n d  t h i s  t o  be  @ = 0.13. For 
time-varying f i e l d s  i o n i z a t i o n  can occur a t  much lower l e v e l s  of F, s ee  f i g u r e  4.1. 

The s i g n i f i c a n t  v a l u e s  of ; w i l l  be seen t o  be  G "= 1. For small  ; t h e  f i e l d  
v a r i a t i o n  i s  a d i a b a t i c  wi th  r e s p e c t  t o  t h e  e l e c t r o n  motion and a f f e c t s  t h e  atom a s  
i f  it were a s t a t i c  f i e l d .  For l a r g e  Q t h e  f i e l d  o s c i l l a t e s  many times dur ing one 
e l e c t r o n  per iod producing a zero n e t  e f f e c t .  

The p r o b a b i l i t i e s  of i o n i z a t i o n  f o r  va r ious  6 and F a r e  shown i n  f i g u r e  (4.1).  It 
i s  seen t h a t  f o r  small  "Fhe  most dramat ic  e f f e c t s  a r e  f o r  6 z 0.8 and t h a t  a s  P 
i nc reases  t h e  s i g n i f i c a n t  range of ; i nc reases .  A s i m i l a r  e f f e c t  i s  seen  i n  t h e  
c a l c u l a t i o n s  of Martin and Wyatt (1 982) and of Walker and Pres ton (1 977). 

This apparent  s i m p l i c i t y  masks t h e  complexity of t h e  mechanism producing i o n i z a t i o n .  
A more d e t a i l e d  s tudy of t h e  frequency response i s  shown i n  f i g u r e  (4.2): he re  it 
i s  seen t h a t  t h e  i o n i z a t i o n  p r o b a b i l i t y  is a f a i r l y  complicated func t ion  of ;, 
and t h a t  i t  has a sharp d i p  a t  about ; 2 0.5. The reasons f o r  t h i s  a r e  no t  known. 

Fur the r  a n a l y s i s  of t h e  t r a j e c t o r i e s  shows t h a t  each c l a s s i c a l  t r a j e c t o r y  can be  
c l a s s i f i e d  i n t o  o n e o f f o u r  c l a s s e s  which a r e  

C1 T r a j e c t o r i e s  on t o r i ,  which probably never ion ize ;  
C2 T r a j e c t o r i e s  t h a t  i o n i s e  r a p i d l y ;  
C3 T r a j e c t o r i e s  pass ing  through one o r  more extremely h igh ly  exc i t ed  (EEE) s t a t e s  

wi th  r e l a t i v e l y  sudden t r a n s i t i o n s  between them befo re  ion iz ing ;  and 
C4 T r a j e c t o r i e s  which pass  through a sequence of EKE s t a t e s  b u t  do  no t  i o n i s e  

dur ing t h e  time of computation. These would probably i o n i s e  even tua l ly .  



4.1 Three dimensional plot showing the percentage ionization, vertical scale, as a 
function of both frequency and amplitude. The Monte-Carlo method used to 
generate these results is described by Leopold and Percival 1979: it is this 
method which produces the statistical errors shown by the error bars. 

<')/oat 

4.2 Percentage ion~zation as a function of olo ,, for F = (I.(#( Gt 



C2-70 JOURNAL DE PHYSIQUE 

The differences between these types of t r a j e c t o r i e s  a r e  c l e a r l y  seen i n  t h e  time 
dependence of the  compensated energy E ( t ) .  This compensated energy allows f o r  the  
o s c i l l a t i o n  produced by the f i e l d :  inCthe absence of the  Coulomb f i e l d  the 
ve loc i ty  of the  e lec t ron  i s  

F v  = %  - -  2 s i n  w t ,  - mw - 

being a  constant vec tor ,  so the  compensated energy i s  defined a s  

2 F 2 1 
~ ~ ( t )  = i [vx + v2 + (vz + - s i n  wt) - - . 

Y mw 

When t h e  Coulomb f i e l d  i s  weak E ( t )  is  almost constant and i s  approximately the 
mean k i n e t i c  energy of the electFon over one o s c i l l a t i o n .  When E > 0 
ion iza t ion  i s  assumed t o  have occurred. 

1 Rapid ion isa t ion  (C2) 

4.3 E against  time f o r  an ionised t r a j e c t o r y .  

In  f igure  4.3 i s  shown t h e  compensated energy f o r  a  C2 type t ra jec tory .  In  f igure  
4.4 a C1 type of t r a j e c t o r y  i s  given. Eere we see t h a t  E o s c i l l a t e s  around the 
i n i t i a l  energy. When the f i e l d  i s  turned of f  a d i a b a t i ~ a l ? ~ ,  E becomes the  ac tua l  
t o t a l  energy which i s  near ly  t h e  same as  t h e  i n i t i a l  energy. $his  is an example 
of an invar ian t  t o r u s ,  which does not ion ise .  I n  f igure  4.5  before Ec becomes 
pos i t ive  and constant ( ion iza t ion)  i t  i s  f o r  some time negative and constant.  
When t h e  pos i t ions  and v e l o c i t i e s  a r e  checked we f ind t h a t  the  e lec t ron  moves 
slowly i n  a  very la rge  Kepler e l l i p s e ,  with wobbles due t o  t h e  ex te rna l  f i e l d .  
The period of revolut ion i s  proport ional  t o  

The e l e c t r o n  is  i n  an extremely highly exci ted (EHE) s t a t e .  



Invariant  torus (C1)  

4.4 E against  time f o r  an invar ian t  torus type of t r a j e c t o r y .  

Ion isa t ion  v i a  EHE (C3) 

4 .5  E against  time f o r  a  t r a j e c t o r y  which ion ises  v i a  some s t a b l e  EHE s ta tes .  

I f  the  f i e l d  i s  turned off  ad iaba t ica l ly  during t h e  time the  e lec t ron  i s  i n  an EKE 
s t a t e  l i k e  i n  f igure  4.6 the  t o t a l  energy remains negative and constant r e s u l t i n g  
i n  a  f i n a l  EHE s t a t e .  

The behaviour shown i n  these graphs can be understood q u a l i t a t i v e l y .  I n  the 
absence of a  f i e l d  the  e lec t ron  moves i n  an e l l i p t i c a l  o r b i t  with c h a r a c t e r i s t i c  
binding energy and frequency. In the  absence of the  proton the  e lec t ron  moves 
uniformly i n  the  mean but imposed on t h i s  uniform motion is  a  s inusoidal  
o s c i l l a t i o n  (equation 4.6) with c h a r a c t e r i s t i c  mean k i n e a t i c  energy and frequency. 
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I n  ne i ther  case does t h e  e lec t ron  lose  o r  gain energy i n  the mean. But when both 
proton and f i e l d  a c t  together  t h e  i n t e r e s t i n g  th ings  happen, and the e lec t ron  
can gain o r ,  more r a r e l y ,  lose energy. The p a r t i c u l a r  type of phenomena which occur 
depend on t h e  frequency r a t i o  and energy r a t i o  f o r  the proton and f i e l d .  

r-n 
r--.-.), 

I / /  I I i ! 
i I !  
I I / i 

I ,  
I 8  

. , ill 1 r i j  
I j 
i j 

i 

-0 72- 

Final  EHE s t a t e  (C4) 

4.6 E against  time f o r  a  t r a j e c t o r y  i n  a  f i n a l  EEE s t a t e  

As discussed above, i f  the  f i e l d  frequency i s  too small o r  too la rge  l i t t l e  of 
i n t e r e s t  happens. But f o r  3 near u n i t y m o r e i n t e r e s t i n g  e f f e c t s  occur. I n  the  
f i r s t  type (Cl, f igure  4 . 4 )  the t r a j e c t o r y  appears t o  be an invar ian t  to rus  i n  
phase space and on t h i s  t r a j e c t o r y  there  is  no e f f e c t i v e  energy t rans fe r ;  the  
motionismade up of s inusoidal  components and i s  sa id  t o  be mult iply periodic .  
The e l e c t r o n  never goes very muchfurther from t h e  proton than when it was i n  the 
o r i g i n a l  e l l i p t i c a l  o r b i t ,  i n  the  absence of the  f i e l d .  

I n  the  second type (C2, f igure  4 . 3 )  the  o s c i l l a t i n g  f i e l d  and t h e  proton work 
together i n  t h e  e a r l y  s tages  of the f u l l  s t reng th  f i e l d ,  and a f t e r  r e l a t i v e l y  few 
o s c i l l a t i o n s  the e l e c t r o n  is  ionized. These a r e  probably the  i n i t i a l l y  more 
eccen t r ic  o r b i t s .  

I n  the more i n t e r e s t i n g  t h i r d  and four th  types t h e  e lec t ron  gains energy i n  the  
ea r ly  s tages a s  i n  the second type, but not enough t o  ionize.  It moves away from 
the proton i n t o  an e l l i p t i c a l  o r b i t  upon which a r e  superimposed t h e  s inusoidal  
o s c i l l a t i o n s  of t h e  f i e l d .  The o r b i t  i s  eccen t r ic ,  o f ten  highly eccen t r ic ,  with 
i t s  per ihe l ion  a t  a  s imi la r  dis tance from t h e  nucleus t o  a ,  the  i n i t i a l  and semi- 
major a x i s ,  and i t s  aphelion many times f u r t h e r  away. The ca lcu la t ions  show t h a t  
compensated energy i s  very s t a b l e  i n  the  ou te r  ranges of these o r b i t s ,  near the 
aphelion, and indeed anywhere on the o r b i t  which i s  s i g n i f i c a n t l y  f u r t h e r  from the  
proton than a .  The sudden changes i n  energy i l l u s t r a t e d  i n  f igures  4 . 4 ,  4 .5 ,  4.6 
takes place when the  e lec t ron  i s  near the perihel ion.  The time between these 
sudden changes is approximately proport ional  t o  

This i s  what would be expected from our interpretation. Notice t h a t  t h e  weaker 
the binding, the more s t a b l e  the  atom i s  i n  the  presence of t h e  o s c i l l a t i n g  f i e l d .  



Each time the e lec t ron  approaches per ihe l ion  it changes i t s  o r b i t .  It may 
occasional ly ionize,  o r  i t  may be exci ted t o  an even more highly exci ted s t a t e ,  
o r ,  more ra re ly ,  t o  a  l e s s  exci ted s t a t e .  As  time goes on, those atoms which have 
not ionized, and whose e lec t ron  t r a j e c t o r i e s  a re  not on invar ian t  t o r i ,  reach 
higher and higher exci ted s t a t e s  o r  EHE s t a t e s .  

The EHE o r b i t s  are  remarkably s t a b l e  i n  the presence of the  f i e l d .  They have 
frequencies which a r e  very m c h  than t h e  f i e l d  frequency, t h e  opposite of 
ad iaba t ic ,  so t h e  o r b i t  has very many sinusoidal  o s c i l l a t i o n s  imposed on i t s  bas ic  
e l l i p t i c a l  shape. Their l i fe t ime  i s  given by the  

law, so we f ind  t h a t  atoms can be r e l a t i v e l y  s t a b l e  i n  the presence of o s c i l l a t i n g  
e l e c t r i c  f i e l d s ,  even i f  the magnitude of those f i e l d s  i s  many times the  magnitude 
of the s t a t i c  f i e l d  required t o  produce Stark ionizat ion.  

The t h i r d  and fourth types of o r b i t  a r e  dis t inguished only by the  f a c t  t h a t  f o r  the 
t h i r d  type ion iza t ion  does eventual ly take place during the  period considered 
whereas i n  the fourth type it does no t .  It i s  probable t h a t  any o r b i t  of t h e  
fourth type would eventual ly ionize.  

This q u a l i t a t i v e  descr ip t ion  of the  t r a j e c t o r i e s  shown i n  f igures  4.3 t o  4.6 
provides a  clue t o  the  fea tures  required i n  any approximate ana ly t ic  theory. A t  
present there  i s  no simple theory which w i l l  s a t i s f a c t o r i l y  p red ic t  the r e s u l t s  
produced by these numerical ca lcu la t ions .  For t h i s  reason we tu rn  t o  a  simple 
system i n  order  t o  understand b e t t e r  the  complexities of the dynamics. 

5. A per iod ica l ly  forced system of one degree of freedom. - A simpler system which 
has received some a t t e n t i o n  (Rechester and S t i x  1979, Escande and Doveil 1981, 
see a l so  Chirikov 1979 and references there in)  i s  the Hamiltonian (2.4) perturbed 
by a  p o t e n t i a l  per iodic  i n  space and time: 

which may be taken t o  represent  a  hindered r o t a t o r  o r  a  v e r t i c a l  pendulum acted upon 
by a  time-varying f i e l d .  

The phase curves of the  unperturbed motion, E = 0, a r e  shown i n  f igure  2.3, I n  
order  t o  analyse the e f f e c t s  of t h e  per tu rba t ion  it is  e a s i e s t  t o  work with the 
angle-action var iab les  of t h e  unperturbed system: 

I=t[l dq J ~ ( w  - C O ~  q)  cos q ,  = W, 

where W i s  the energy and K(k) and E(k) a re  complete e l l i p t i c  i n t e g r a l s  and of the 
f i r s t  and second kind respect ively.  The r e l a t i o n  between the energy and ac t ion  and 
frequency and ac t ion  a r e  shown graphical ly i n  f igure  5.1. The most important 
aspect of the frequency r e l a t i o n  i s  the rapid decrease t o  zero a s  W -t 1 :  more 
prec i se ly  
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Fig.  5.1 

The unperturbed motion i s  p a r t i c u l a r l y  easy t o  unders tand because t h e  phase space 
i s  two dimensional and t h e  phase curves  easy t o  draw. The p e r t u r b a t i o n  s p o i l s  t h i s  
s i m p l i c i t y  by ' in t roduc ing  another  dimension, t ime,  so we need an a l t e r n a t i v e  method 
of r ep resen t ing  t h e  s o l u t i o n .  One of t h e  most convenient techniques  i s  t o  look 
a t  ( q ( t ) , p ( t ) )  a t  r e g u l a r  i n t e r v a l s  equal  t o  t h e  per iod of t h e  fo rc ing  term, t h a t  
is t o  view t h e  system using a stroboscope of t h e  same frequency a s  t h e  f o r c i n g  term. 
Then we see  a s e t  of p o i n t s  

which can be  p l o t t e d  a s  a sequence i n  t h e  two dimensional (q,p) phase space. 

C lea r ly  t h e  phase p o i n t  (qs+ l ,ps+ l )  i s  uniquely  determined by the  previous  phase 
po in t  (qs,pS): 

It can a l s o  be  shown t h a t  because t h e  o r i g i n a l  system i s  Hamiltonian t h e  mapping 
(5.6) i s  area-preserving. 

I f  t h i s  technique i s  app l i ed  t o  t h e  unperturbed problem each sequence wi th  a given 
energy W l i e s  on t h e  appropr ia t e  phase curve of f i g u r e  2 . 3 .  If t h e  r a t i o  w(W)/Q 
i s  i r r a t i o n a l  t d e  sequence of p o i n t s  w i l l  even tua l ly  f i l l  t h e  phase curve, bu t  i f  
w / n  i s  r a t i o n a l ,  r / s  say ,  then a f t e r  s per iods  t h e  sequence w i l l  r epea t  i t s e l f ,  
t h a t  is  t h e  mapping i s  p e r i o d i c  wi th  per iod s :  



The perturbat ion t o  t h e  o r i g i n a l  Hamiltonian causes a  perturbat ion t o  the  mapping 
(5.6),  and no matter how small t h i s  per turbat ion i s  i t s  e f f e c t  i s  very 
complicated. 

Consider a  perturbat ion of the  t r a j e c t o r y  f o r  which w / Q  = r /s ,  so t h a t  there  a r e  
s unperturbed f ixed po in t s  (qi p . ) ,  i = O , l ,  ..., s  - 1 ,  then a  general theorem 
(Arnold and Avez 1968 sec t ion  20f shows t h a t  f o r  suf f  i c i e n t l ~  small per turbat ions,  
and some k ,  2ks f ixed points  a r e  produced and t h a t  ha l f  these a r e  s t a b l e  and ha l f  
unstable .  

5.2 Stroboscopic p l o t  of the  unperturbed system, E = 0. Three t r a j e c t o r i e s  a r e  
shown; the f i v e  d i s t i n c t  dots  i s  t h e  t r a j e c t o r y  with w = 415: these a r e  
surrounded by closed curves of l a r g e r  and smaller frequency (smaller and 
la rger  energy). 

This behaviour i s  seen c l e a r l y  i n  f igures  5.2 and 5.3. The f i r s t  of these f igures  
shows the unperturbed t r a j e c t o r y  with w = 415 and two neighbouring t r a j e c t o r i e s :  
the  second shows the e f f e c t  of the perturbat ion on these t r a j e c t o r i e s ,  and here 
the f i v e  s tab le  f ixed points  a re  c l e a r l y  seen; remember t h a t  a l l  of these points  
a r e  obtained from a s ing le  t r a j e c t o r y .  Surrounding these f ixed points  a r e  small 
"islands"; only one t r a j e c t o r y  producing the i s lands  i s  shown i n  f igure  5.3. The 
t r a j e c t o r i e s  forming these i s lands  behave q u a l i t a t i v e l y  d i f f e r e n t l y  from any of the 
unperturbed t r a j e c t o r i e s .  On the o ther  hand t h e  inner and ou te r  t r a j e c t o r i e s  shown 
i n  f igure  5.3 a r e  q u a l i t a t i v e l y  s imi la r  t o  the  unperturbed t r a j e c t o r i e s  shown i n  
f igure  5.2. 

I n  f igure  5.3 f i v e  s t a b l e  f ixed po in t s  a r e  shown and the f i v e  unstable  f ixed  points  
a r e  not shown although t h e i r  approximate posi t ion i s  c l e a r .  Neither is  the  

separa t r ix  passing through these unstable  f ixed points  shown. When these 
fea tures  a r e  included the  l o c a l  s t r u c t u r e  of t h e  phase curves looks very 
s imilar  t o  t h a t  of the  unperturbed pendulum f i g u r e  2.3. 
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5.3 Diagram showing t h e  e f f e c t s  of  a smal l  p e r t u r b a t i o n ,  & = 0.1, on t r a j e c t o r i e s  
nea r  those  of f i g u r e  5 .2 .  A t o t a l  of f o u r  t r a j e c t o r i e s  i s  shown; one, 
producing t h e  f i v e  do t s ,  has  a pe r tu rbed  f requency of 415, surrounding t h e s e  
d o t s  a r e  f i v e  i s l a n d s  produced by a neighbouring t r a j e c t o r y .  Surrounding 
t h e s e  i s l a n d s  a r e  two t r a j e c t o r i e s  s i m i l a r  t o  t h o s e o f t h e  unper turbed 
t r a j e c t o r i e s  of f i g u r e  5.2. 

Now cons ide r  a more d e t a i l e d  a n a l y s i s  of t h e  p e r t u r b a t i o n .  I n  angle-act ion 
r e p r e s e n t a t i o n  t h e  p e r t u r b a t i o n  may be  w r i t t e n  a s  t h e  F o u r i e r  s e r i e s  

C O S ( A ~  - a t )  = 1 ~ ~ ( 1 )  cos(n0 - at  + an) (5.8) 
n 

s o  t h a t  t n e  f u l l  Hamiltonian i s  

Then t h e  equat iors  of motion a r e  



A straightforward perturbative solution is 

where (Bo,Io) are the initial values of (0,I). Clearly if Inw(~~) - ClI is not 
small for any n this simple solution is reasonably accurate and we 
should expect the phase curves to be only slightly perturbed. But for those 
phase curves for which nw(I ) " Cl for some n this expansion is invalid. Note 
that in this case the unper?ubed mapping is periodic with period n. 

Now concentrate on the perturbation to an unperturbed motion with action 
I " I where m 

m w(I ) = Cl.  m 

Then if I is not too close to Im+, all terms in the sum of equation (5.10) 
other tha: n = m will be rapidly varying and, as in the Rotating-wave 
approximation (see for example Knight and Milonni 1980), may be ignored to 
give 

This time dependent Hamiltonian can be converted to a time independent 
Hamiltonian by using the canonical transformation 

which gives 

But since I is close to Im we put 

and assume P small. Then to within an irrelevant additative constant 

K($,P) = 5 w'(I,)P' + E V (I ) cos m$. m m (5.19) 

The justification for ignoring higher terms in this expansion will become clear 
soon. 
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5.4 Sketch of the  phase curves f o r  t h e  Hamiltonian (5.19). Here fi and Q 
a r e  in te rpre ted  a s  polar  coordinates. 

The Hamiltonian (5.19) i s  s imi la r  t o  t h a t  of t h e  v e r t i c a l  pendulum, equation 2.4, the 
main difference being t h a t  is replaced by m$, so t h a t  f o r  $ E (0,271) t h e r e  a r e  2m 
f ixed po in t s ,  a t  $ = r"/m r = 0,1, ..., (2m-I), p = 0: half  of these a r e  s t a b l e  
around which (+,P) executes small o s c i l l a t i o n s .  I n  between these a r e  the m unstable  
f ixed po in t s  jointed by separa t r ixes .  Outside the  separa t r ixes  the motion i s  
s imi la r  t o  the  unperturbed motion. I n  the  case m = 5 t h i s  is  shown schematically 
i n  f igure  5.4 i n  which fi and $ a r e  t rea ted  a s  polar  coordinates. The maximum 
distance separat ing the  separa t r ixes  i s  

The motion i n  the  o r i g i n a l  (8, I )  representat ion i s  e a s i l y  obtained from f igure  (5.4) 
by not ing t h a t  (5.16) i s  equivalent t o  transformation t o  a reference frame r o t a t i n g  
with angular speed Sllm. Thus our stroboscope w i l l  p ick out  t h e  values of 8, 

That i s ,  each successive time t h a t  t h e  system i s  lit up we see motion around 
adjacent  f ixed points  i n  the  (+,P)  representat ion.  

This q u i t e  simple ana lys i s  s a t i s f a c t o r i l y  explains  the behaviour shown i n  f igure  
5.3. 

I n  f igure  5.5 is  shown the  e f f e c t  of the  per tu rba t ion  of a l i b r a t i n g  t r a j e c t o r y  a t  
higher energies .  In  t h i s  f igure  seven t r a j e c t o r i e s  a r e  shown: the inner four  a r e  
t h e  same a s  shown i n  f igure  5.4. The ou te r  curve corresponds t o  an unperturbed 
r o t a t i o n a l  motion, and t h e  i s lands  underneath it belong t o  a s e t  of f ixed points  i n  
the  r o t a t i o n a l  region. The unstructured sequence of dots  a l l  belong t o  a s i n g l e  
t r a j e c t o r y :  t h i s  sequence does not l i e  on any simple curve and c l e a r l y  t h e  
t r a j e c t o r y  producing t h i s  sequence is  of a d i f f e r e n t  kind t o  any previously 
encountered. It is named an i r r e g u l a r  t r a j e c t o r y  (Percival  1973). 



5.5 Stroboscopic plot showing an irregular trajectory of the Hamiltonian (5.1) 

For this irregular trajectory the previous analysis is invalid as the assumption 
that neighbouring resonant terns do not interfere is invalid. From figure 5.1 it 
can be seen that as m increases the difference I - I decreases rapidly. If m+l m 

- 
I~+, - Im . separatrix width = 2-/~;1l (5.22) 

then the ~amiltonian (5.15) is no longer a resonable approximation to the system. 
Of course as m increases I V  I decreases, but the numerical work of Rechester and 
Stix (1979) shows that at mm: 6 equality (5.22) holds. It is the overlapping of 
these resonant terms which causes the break-up of the tori (see from example 
Chirikov 1979) and the condition (5.22) gives an approximate criterion for the 
destruction of the invariant tori. 

When condition (5.22) is satisfied the full Hamiltonian may be approximated 
satisfactorily by including both the n = m and n = m + 1 resonant tori. This 
Hamiltonian is not integrable, but the more sophisticated renormalisation methods of 
Escande and Doveil (1981) may be used to give a more accurate criterion of the onset 
of chaos. 
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