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DURATION OF COLLISIONS IN SEMICONDUCTORS

J.P. Nougier, J.C. Vaissidre and D. Gasquet

Université des Sciences et Techmiques du Languedoc, Centre d'Etudes d'Electro-
nique des Solides, Laboratoire associd au C.N.R.S., LA 21, Greco Microondes et
G.CIS., 34060 Montpellier Cedex, France

Résumé.- Une des hypothéses de validité de 1'équation de Boltzmann est que
Tes collisions sont instantanées. Nous montrons dans cet article que, pour
les interactions usuelles dans_les semiconducteurs, la durée de collision
peut &tre estimée & = 5 x 10-13 sec et n'est donc pas négligeable devant la
durée de 1ibre parcours moyen.

Abstract.- One of the basic hypothesis involved in the Boltzmann equation is
that the collisions are instantaneous. In this paper it is shown that, for
usual scattering processes _in semiconductors, the collision duration can be
estimated to be = 5 x 10-13 sec, which is therefore not at all negligible
compared with the mean free flight duration.

1.INTRODUCTION

Transport coefficients in semiconductors are defined as averaged values of
functions of the wave vector K, over the distribution function f(?,?,t) which, in
an electric field f(?),'is defined as a solution of the classical Boltzmann equa-
tion :

> > >
ofkrst) 4 & E F f(KFt) + V., f(GF1) = T f(RF1) (1)

i = h/2m, h and e are the Planck's constant and the charge of a carrier , fi K is
-~
the quasi momentum and C is the collision operator. In the classical formulation,
A
C is defined as:
T f(K.7t) = 2 P(R'.E) F(K'.7,t) [1-£(K, 7, 1) ] k!
1
- 2 PR FE Pt [1-F(R,F, )]k
T
(2)
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and for usual doping f <<1. P( ) is the transition rate from the state Kk to

the state K'. Among the approximations made for getting eq. (2), is the assumption
that the collisions are instantaneous, which meansthat P(?,F') does not depend on
time, which has two consequences : (i) P(f,?') does not depend on the electric field,
(ii) after a collision, a carrier has Tost the memory of its initial state, which
means that the process is Markovian. Thus the memory time of a given carrier is
mainly related to the time between two successive collisions, called the relaxation
time, or the free f11ght duration, which is well known to 1ie in the range 10™ -12

- 107 -14 sec. When the assumption of the instantaneous collisions fails, the classi-
cal Boltzmann eq. (1) must be replaced by a "retarded" equation [1 ][ 2 1.

It is then very important to get an idea of the order of magnitude of the
average collision duration, which needs first to define it. A possible definition,
in connection with our problem, could be the following : the collision duration is
the time needed for the distribution function to loose the memory of its eariier
states. This definition, which is similar to that of a correlation time, would
indeed give the time below which the classical Boltzmann equation should be repla-
ced by a retarded equation. Unfortunately, we are up to now unable to evaluate this
time. Because of the probabilistic nature of the quantum mechamical equations, we
can but estimate it as being the time during which the carrier is under the influen-
ce of the scattering center. As a consequence, the classical Boltzmann equation will
be valid when the duration of a collision (just defined above), is short compared
with the free flight duration, that is with the average time between two collisions.

This can be physically illustrated by making a Monte Carlo simuylation, which
was proved [ 3 ][ 4 Jto be a solution of the classical Boltzmann equation. In such
a simulation, a free flight duration is determined using a random number, which
allows one to know the state of the carrier at the end of the free flight, which
means its initial state k at the beginning of the next collision. After having
selected the collision mechanism using an other random number, three more random
numbers allow one to determine the final state k' after the collision. In fact
only two random numbers are needed since the find energy e' 1is determined through
the conservation Taw €' =e+ hw. Thus the final state and the final energy are
simultaneously determined at the end of the free flight. The transition does not
depend on the electric field since the carrier has not time to be accelerated du-
ring the collision, as it is during the free flight.

The purpose of this paper is not to evaluate the correct collision duration
T. finvolved in ref.| 1 || 2 |, which is much difficult since 7. depends both on
the scattering mechanisms and on the distribution function itself. Rather, we shall
point out the inconsistency of the usual Boltzmann equation, by showing that the
collision duration Te involved in it, deduced from well known formulas, is not at
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all negligible compared with the free flight duration. As a consequence the lecturer
will not find in this paper any guidance for deducing the correct value of Te- The-
refore one might be doubtful as concerning the usefulness of such a paper. Indeed
due to the numerous discussions arising about the necessity of using retarded trans-
port equations, we feel necessary to clarify some hisunderstandings about usual con-
cepts of collisions and, mainly, to give some numerical values, which has never been
done previously, so that people keep in mind the orders of magnitudes of the pheno-
mena involved.

We shall first investigate classical motions in a well of constant potential
(section 2) and in a screened Coulomb potential (section 3), then quantum scattering

by phonons (section 4).

2. CLASSICAL.SCATTERING BY A WELL OF CONSTANT POTENTIAL

An incident carrier is scattered by a potential U(?)

U(r) = - U, for rgR and U(?) =0 for r>R

~

Let b and v_ be the parameters defining the incident particie of mass m. The

conservation of the energy gives :

1 2 _1 2
5 Mg, = 5 My - Uo
and the incident and refraction angles o and B {see fig. 1) are related through :
1/2
sin‘a/sin B= (1 + 2 Uo/mvwz)

Figure 1 : Classical trajectory
of a particle scattered by a X
well of constant attractive
potential,

Ur)==U, Un=0
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The Tength of the path L in the well (see Fig. 1) is L = 2 R'cos B , the
duration of the collision is then t(b, v ) = L/v that is :

12 _ -1
t(bov,) = 2[R(1+2 U/mv,2)- 6% v+ 2y D) (3)

The dn particles in the range [b,b + db] is dn«2mb db, if one supposes a uniform
density. The average collision time -(b) is then :

R R R R
<(v,) =£ t(b,v,) dn J dn = S t(b,v_)b db S b db (4)
b=0 b=0 0 0
that is
3/2 3/2 -1
T(v,) = %’_R[u r2u/mi) - (2 Uy mid) ](1 v2uml) ()

At the present stage, several remarks must be made :
(i) The beginning ti and the end tf of a collision are perfectly determined. The
collision is elastic, thus the initial and final energies are equal, but the final
state (or velocity) is different from the initial one since the particle is deflected.
{i1) During the collision, the energy departs from its jnitial value.
(iii) The motion is classical, which means that, when the initial state is known, the
final state is perfectly determined.

This example shows that there are at least two ways for defining the duration
of the collision t(b, v ) :

a) the time during which the energy departs from its initial and final values
(e=¢;ande= ef).

b) the time during which the velocity (= the state) departs frem its initial and
final values, that is the time during which 0<<(3’x', 3;)<<x where x= 2 (a0 ~ B)
is the deflection angle.

In this example, these two times are jdentical.

Now 1 (v_) can be computed, we used for this purpose the parameters corres-
ponding to n-Si at 300 K with n = ND = 1015 cm-3. R was set equal to the average
distance between two impurity atoms R = 5x10'8 m. Uo was set equal to the average
value of a screened Coulomb potential in the sphere of radius R :
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Figure 2 : Average collision
duration versus the initial velo-
city for classical motions of a
particle of mass 0.26 mg, in a
well of constant potential (CP)
and in a screened Coulomb poten-
tial (SCP). Parameters used :
CP:U(r)=- 2.87 meV for
r<5x10-8 m, U(r)=0 for
r>5x10-8 m.
SCP : parameters of silicon at
300K, Np = 1015 cm=3.
—&— CP 3 SCP, collision begin-
ning when the velocity vector
deviates of 0.01 rad from its
initial value (=== ,when the
kinetic energy departs of 10-6
from its initial value (~@—),

when r = R (-8 ,

and r = a (—m=)

R R
- U =g U rzdr/g ¥ dr
0 o] o]

U(?) is given in the next section. This Teads to U0 = 2.87 meV.

Figure 2 shows the variation of t(v_). It follows from eq. (4) that
(v, > 0) = 2Rym/2 U0 and t(v_-+ =)=4R/3 v, ~ 0. Figure 2 shows that,for the usual
initial velocities of the carriers v_ g 107 cm/s,t= 1 ps, which means that t is
of the order of magnitude of the free flight duration.

3. CLASSICAL SCATTERING BY A SCREENED COULOMB POTENTIAL

Now

U(r) = - & exp (- r/a) 12

A=ef/anzand a= (SkgT/n )
where ¥ is the dielectric constant, kB the Boltzmann constant. Let (r,6) be the po-
lar coordinates/of the incoming particle of initial energy e¢= % mvm2 and angular
momentum J = mv_ b. Given (r,8), one has :

s (drsdt)? = 2w [e - u(r)] - (3%/mPr?)

do/dt = J/m r

These eqs allow one to get r{t + At) = r(t) + At dr/dt and 6(t + At)=0(t) + At do/dt.
The trajectory can then be computed.
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Some difficulties arise, for defining the collision time, with respect to the
previous example, related to the fact that the potential well is not bounded. Thus,
strictly speaking, the collision time is infinite. In practice, when the particle is
far from the diffusing center, the potential is so low that the energy and the velo-
city are almost unchanged. As a consequence we defined the collision duration as
t(b, v ) =2 (tm'ti) where t, is the time when r 1is minimum, that is (dr/dt)2=0.
For ti several somewhat arbitrary definitions can be used :

a) t; =ty such as the velocity deviates significantly from its initial direction,
namely (3x', 7) = 0.01 rad. This gives Tv(b,vw) =2 (tm - tiv)'

b) ti = 1:1.€ such as the kinetic energy departs significantly from its initial value,
namely : - U [r(t; )]/e = 107, This gives t_(b,v,) = 2(t, - t, ).

c) t = tip such as r Lt ] R where R is the half mean d1stance of two impuri-
ties : R=5x 100 m for Np = 101 o3, This gives to(b,v, ).

d) t; = t;, such as r[iié] = a. This gives t (b,v).

i i
Once the t(b,v_) have been computed, one gets the average collision duration
t(v,) through eq. (4). Using the parameters of n-Si at 300 K, ND 15 cm 7, one

gets A = 1.97 x 1002 mand a = 1.29 x 1077 m. Figure 2 shows TV(Vw), T (V) s

(v ) and Ta(Vm) versus v_. Of course, fig. 2 shows that the different definitions
]ead to different collision durations. However, in the range v_= 105 to 107 cm/s,
the collision durations exceeds 5 x 10~13 sec.

4. QUANTUM SCATTERING

In quantum scattering, the final state is not determined once the initial
state is known. If a carrier at time t = 0 undergoes a collision with, say , a pho-
non of energy fiw, the probability EP k E ) of a transition, between its state 3
of energy ¢ at time t = 0, and the state K' of energy €' at time t, is given by :

g?t(_l:’_'zl) = lvkkllz 4 [Sinz (E - €':‘hw ]/(8 -c +hU) (6)

where the plus and minus signs correspond to absorption and emission. For elastic
scattering, iw= 0. Setting

a= (g - sf)/Z fi and €¢ = eth w (7)
eq. (6) writes
2
TV, .| .2
gz(zpz.) - k; t s1n2a't (8)
i mat

Usually one sets sinztxt/ (ﬂ'azt) = §(a), which gives ¢' = e¢ (energy conservation):
this is true when t » =, in practice when |at |>>.
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In this approximation, the transition rate becomes constant :
dgh;(fs k'y/dt = 1T|kall2 G(a)/'h2 = P(K,K'), and one gets the classical
Boltzmann equation.

It is often assumed, when writing that the transition between the state K
at time t = 0 and the state k' at time t is t(K’KI)’ that this transition takes
place suddenly at time t, within dt, nothing being occured between 0 and t - dt :
if this description were valid, the collision could actually be instantaneous (the
coliision duration being dt), although occuring within the time delay t. However
this picture is erroneous, and the transition occurs gradually during the whole
time duration t. The reason is that, if the transition occured suddenly, }iﬁﬁ,?')
would exhibit sudden changes, since one would get i?;_dt(ﬁ,?') = 0 and 71(?,?') 40 :
hence dffi(?,?')/dt would show discontinuities. Indeed the carrier initially in
the state K (labelled |E§ in quantum mechanics) at time t = 0, is at time t in the
state U(t,O){E> » where U(t,0) is the evolution operator solution of the equation
| 6 |:

ifisU(t,0)/3t = H(t) U(t,0) (9)

where H(t) is the total hamiltonian including the scattering potential V(t) (as
well as the external field). The probability to find this carrier in the state ]K'>
at time t s then :
[
Jt
As can be seen from eq. (9), the variation of U(t,0) is quite gradual, and
so is the variation offr;(ﬁgﬁ'). Thus the transition between the state k at time
0 and the state E' at time t actually lasts during ail the time t. Of course,
within the same time t, the transition may as well occur between the states K and
k", with the probabi]ityffi(?,?") : if it occurs, this transition is also gradual.

(®R') = [<k'| U(ts0) [E 5| (10)

The important above comments lead to the conclusion that the time t is, more

or less, related to the duration of the transition between the states k and k',
that is to the duration of the collision. In order to define this more precisely,
we have plotted, on figure 3,t§; (e' - sf)Z?z(O) = (sin<xt/at)2 as a function

of €' - e for various values of t between 1071% sec and 5 x 10713 sec. qi(e' - g¢)
is then obtained by multiplying this quantity by a factor proportional to t2. We
shall define the duration of the collision r(f) as the time needed for the carrier
to reach its final energy, i.e. the time such that &' - €f = 0. As was already noti-
ced, one might have defined it as being the time f(?) needed to reach the final
state, but eq. (6) does not give any information about that. However, because of the
dispersion law e(?), once the final state has been reached, the final energy is €f 3
on the contrary, since many states have the same energy, the final energy gg Can be
reached although the carrier is not still in its final state.
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Now the time needed for ' - e = 0 is infinite. In practice, we must define

the collision time as being the time such that ¢' - €¢ is located around zero with
a good enough accuracy. For example it can be assumed that emission or absorption
of an optical phonon of typically 40 meV is achieved when the energy e' departs

from €¢ of an amount of about 10 % of the phonon energy, that is ' - ef< 4 meV.

13 sec for the probability, that e' - er< 4meV,

Fig. 4 shows that it takes 5 x 10
to be high enough compared with the probability that &' - €¢> 4 meV. For example
the curve t = 10'13 sec on Fig. 4 shows that the final energy is located within
+ 40 meV around €. 0f course the value 4 meV has been taken arbitrary, but it gives

a fairly good order of magnitude. For elastic scattering (acoustical phonons or

impurities), one might have decided that the collision is achieved when the energy
e' departs from ¢ =¢ of an amount of 0.1 kT, that is 2.5 wmeV at 300 K, Teading to

a time slightly larger than 5 x 10'13 sec. Note that the collision time defined
through the final state rather than through the final energy, as was discussedabove,

is still Targer.
This section clearly shows that 5 x 10'13 sec gives an order of magnitude of
the duration of a collision, which is therefore not at all negligible compared with

the free flight duration.

t=10""5sec

RE-EY/ TR (0)

T it e s & et
—————— 'l'

L/_t - 10'14sec

s
K
'I' [
/ N 'l t=5x10"Msec
‘I' s 057
/ ’:' .: S t= 10—13560
)
S 5107
K4 ' N e - t=5x sec
/' cl' ':
I S - l'
100 150

- "52';+ o S .
100 :&; ’ o

50

-t (meV) —

Figure 3 : Normalized transition probability versus the energy e'-egof thescattered
particle, at various instants. e; = e*fhwis the final energy reached after .an

infinite time.
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5. CONCLUSION

The evaluation of the duration of a collision is a fundamental problem for
deciding whether one should use the classical Boltzmann equation or a retarded
equation. However, as was shown in this paper, this problem is very hard to solve,
because many definitions of the collision time can be used, since several parame-
ters vary during a collision. Once a parameter has been choosen, the magnitude of
its variation still remains arbitrary f this was clearly evidenced even on examples
in classical mechanics.

A very simple evaluation of the collision duration can be performed using the
laws of classical mechanics for impurity scattering : the radius of influence of an
impurity is= 10'7 m, sO that a carrier having a drift velocity in the range 105 to
107 em/s will remain 10710 to 10712
with the results shown fig. 2.

sec under its influence : this is in agreement

For a deeper insight, we must use a quantum formalism of the transition pro-
babilities : according to the discussion of section 4, illustrated by Fig. 3, we
got an estimate of the collision duration of =5 x 10'13 éec. This is of the order
of magnitude of the free flight duration. We therefore conclude that the classical
Boltzmann equation, in which the collision duration is neglected, is not very well
appropriate for describing transport in semiconductors.

1t must be taken in mind that the time discussed above is only an estimate of
the usual, approximate, expression of the collisjon duration : it is not an estimate
of the exact collision time?fc , which depends on the strength of the interaction
as well as on the external driving force. However it 1ikely gives the order of ma-
gnitude of the phenomenon, which has not yet been performed till now, and anyway
shows the inconsistency of the hypothesis leading to the usual Boltzmann equation
for semiconductors.

The question is then to know whether this can significantly or not modify the
numerous results, in particular of transient regimes, accumulated during the last
decade by solving the classical Boltzmann equation. Indeed one would think that ac-
tual relaxation mechanisms are less efficient than given by the instantaneous colli-
sion approximation, since emission of optical or intervalley phonons, which are the
main relaxation mechanisms, require much more time than given by the classical theo-
ry. In fact one must keep in mind that, using new equations, new coupling constants
(deformation potentials, etc...) should be used, so as to fit the new theoretical
results with the known experimental data of static transport coefficients. As a
consequence, the transient regimes themselves probably will not be much modified :
indeed it can be shown [ 5] that transient behaviour can be quite correctly descri-
bed using balanced equations involving the static characteristics, independently
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from any hypothesis concerning the scattering mechanisms or the distribution func-
tion. However all these predictions are but qualitative and should be confirmed by
computations performed on concrete examples.
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