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Abstract.~ Nuclear structure at the highest spins is very likely to involve both collective and sin-
gle~particle aspects. The liquid—-drop model favors shapes that imply combinations of collective (ro-
tational) and rotation-aligned single-particle angular momenta. The detailed band structures for the

full range of such mixtures are considered.

Nuclei are composed of a small (but not too
small) number of nucleons. As a result they
display both collective and single-particle
(non-collective) features. For example, in the
rare-earth and actinide regions, the low-lying
rotational bands represent an almost pure collec—
tive motion, with energies following the I{1 + 1)
rotor formula to within a percent or two, and E2
transition probabilities nearly 200 times larger
than a single proton would have. On the other
hand, near the closed shells, the energy levels
are almost completely determined by the motion of
a single nucleon. Most nuclear levels display
both collective and non-collective features, and
high-spin states are no exception. To approach
the physics of these states I will first describe
some properties of a purely collective, classical
rotor, and then consider the effects of coupling
single particle motion to this. The objective is
to understand the kinds of mixtures of collective
and single particle motion that are important in

nuclei at the highest spins. Our ideas about such

—
Presented at the International Conference on

Nuclear Behavior at High Angular Momentum,

Strasbourg, France, April 22-24, 1980.

states have undergone important developments
recently that now make possible a reasonably
simple description of this subject, which I will
try to present.

A11 nuclei seem to have some collective
features at the highest spins. The collective
1imit is thus one we must understand, and the
basic nuclear system here has been found to be an
axially symmetric rotor with quadrupole defor-
mation. The moment of inertia of a classical
rotor depends on both the shape and the flow
pattern, the latter of which is expected to be
rigid in nuclei at high spins. The pairing corre-
lations modify this significantly at Jow spins
values, but are expected to be completely quenched
by spins of 30h or so. The shape of a rigid
ellipsoid can be expressed in terms of the para-
meters, o and vy, defined so that the semi-axes r.

1

are related to the mean radius R by; ry = aiR,

where:
3 = eocos(y — 2m/3)
62 - eccos(y + 2%/3) (1)
ag = @ICOSY

For small deformation this gives aR/R~e~1.5¢ and

g8~1.60. Such an ellipsoid has moment of inertia:
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where ?% is the rigid sphere value, and the axes
may be permuted cycltically. Values of ft can be
obtained from the expression for a rigid sphere

given by Myers'l. From the equivalent sharp

radius for the matter distribution:2

R, = 1.28 A3 076 v0.8 a3 o (3)

the value for a sphere is:

(4)
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The effect of a diffuse surface can be added
simply by:

2

+
sharp

where b is the width of the diffuse region,
normally around 1 fm. For orientation one can
use the simpler expression:
R=1.16 A3 tm (6)
which leads to:
n/2% = 36 A75/3 mev (7)
The general behavior of the moments of inertia

of rigid ellipsoids, as given by egn. 2, is shown

in Fig. 1. These are for prolate, P, or oblate,

5/,

Fig. 1. Rigid-body moments of inertia for the
appropriate shapes and axes as a function
of the deformation parameter, o (eqn. (1)).

0, shapes rotating about the symmetry axis, I, or
about an axis per pendicular to it, L. For rigid-
flow behavior, triaxial shapes will fall between
these 1imits. The oblate shape rotating about its
symmetry axis and the prolate shape rotating about
a perpendicular axis clearly have the largest
moments of inertia and thus the lowest rotational
energies. These two configurations have similar
values for reasonable deformations (¢ ¥ 0.6), and,
in fact, cross around ¢ = 0.5, It is not, a
priori, apparent that the full liquid-drop energy
will follow this behavior since there is also a
shape dependence in both the surface and Coulomb
energies. However, when the deformation is ex-
pressed in terms of ¢ {eqn. 1), the shape (v)
dependence of the surface and Coulomb energies

comes in only as a high-order term (third order



in o), so that the full liquid-drop energy at high
spins does follow rather closely the moment-of-
inertia behavior shown in Fig. 1. The crossing
from oblate to prolate shape, as lowest in energy,
comes just prior to fission in the full liquid-
drop treatment, around ¢ = 0.5. The point of this
discussion is that the macroscopic liquid-drop
behavior of nuclei favors two particular situa-
tions, Py and 0" (and the triaxial pathway between
these), and the questions of interest are: (1} is
this energy gain significant; and (2) if so, what
kind of microscopic nuclear structure is implied.

The lowest order expansions of eqn. 2 for the
situations shown in Fig. 1 are illustrated in
Fig. 2. These expansions begin to deviate signif-
icantly from the exact expressions around 8 = 0.3
(c = 0.2), as can be seen in Fig. 1. The energy
trajectories based on these four cases of class-
ical rigid rotation for g = 0.3 are shown in the
right part of Fig. 2. The lowest energies are for
an oblate shape rotating about the symmetry axis,
corresponding to its largest moment of inertia.
The earth is oblate for precisely this reason;
however, real rotating nuclei are generally not
oblate due to the shell effects, as will be
discussed shortly.

For systems where the quantal aspects are
important, the preceeding discussion has to be
clarified, since these systems cannot rotate
collectively about a symmetry axis—there is no
way to orient them with respect to such an axis.
It was understood for some time that this meant
these degrees of freedom were contained in the
single-particle motion. However, when Bohr and

Motte1son3

considered aligning particle angular
momentum along a symmetry axis, they realized that
on _the average the energy was the same as for
rotating the system classically about that axis.

They have strictly shown this only in the Fermi

€10-3

gas approximation, but it is generally believed

to be true, or approximately so, for realistic
nuclear systems. Particle angular momenta aligned
along a nuclear symmetry axis are then viewed as
an effective rotation of the system about that
axis. Thus the trajectories sketched in the right
part of Fig. 2 all have meaning for nuclei; the
solid ones are true collective rotations, having
smooth energies and strongly enhanced E2 transi-
tion probabilities, whereas the dashed Tines are
the average location of irregularly spaced states
having single-particle character. Both features
of the latter-type states suggest that isomers
should be reasonably probable, and these expecta-
tions have led to a number of searches for them,
as will be discussed by other speakers.

To this picture the microscopic aspects of
nuclear structure must be added. Nuclear levels
in a potential well are grouped together into
shells in very much the same way electrons are
in an atom. Certain nucleon numbers ("magic
numbers") complete shells and have extra stability
in analogy to the noble gas electronic structures.
However, when nuclei deform, the shells change, so
that the number to complete a shell is different.
Thus, in general, a given nucleon number will
prefer that shape which makes it look most nearly
like a closed shell. These "shell effects" can be
as large as 10-12 MeV (the double closed spherical

shell at 208pp),

but on the average might be 3-4
Mev. Comparing with the right side of Fig. 2, it
is apparent that 3-4 MeV is larger than the full
spread of liquid-drop shapes up to I = 30. Thus
below this spin (for A ~ 160) the nuclear shape is
determined mainly by shell effects. Around I =
60, however, the spread in Fig. 2 is ~10 MeV,

considerably larger than the normal shell effects,

so that here one expects the liquid-drop effects

to dominate, producing mainly oblate shapes rotating
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Fig. 2. The left side shows the lowest-order estimates for
the rigid-body moments of inertia in terms of the
deformation parameter, g (~1.60). The right side
shows the corresponding energy trajectories for
g = 0.3 and mass number 160.

around the symmetry axis (non-collective behavior
with isomers) or prolate shapes rotating collec-
tively (smooth bands and no isomers), or some
intermediate triaxial configurations.

In order to understand how single particle and
collective motion might be combined in nuclear
states at high spins, I will start with a collec-
tive rotational nucleus, and couple to this first
one and then more single particles. The rotation-
al angular momentum is necessarily perpendicular
to the nuclear symmetry axis (as discussed above)
and the particle angular momentum, j, can couple
either along the symmetry axis as illustrated in
the top part of Fig. 3, or along the rotation axis
as in the bottom part of Fig. 3. The former situ-
ation is that considered by Bohr4 and the pro-
jection of j along the symmetry axis, called Q,
is a constant of the motion. In this case the
collective angular momentum, R, and the projection
of j along the rotation axis are not constants of
the motion. In the lower part of Fig. 3, the
projection of j along the rotation axis, called

a (or i), is sharp, and here R and @ are not

constants of the motion. It seems rather clear
that a perpendicular relationship between R and j
will be much less favorable for producing low-
energy high-spin states than a parallel one. This
is borne out by the fact that as the nucleus
rotates there is a Coriolis force which tends to
align j with the rotation axis. The back-bending
phenomenon, and a number of other related effects,
are now known to be connected with such "rotation-
aligned" states. In the remainder of this lecture
I want to try to trace how the inclusion of such
states can effect a smooth transition between
fully collective and fully non-collective regions
of nuclear behavior.

In the upper left portion of Fig. 4 a complete
collective behavior is illustrated. The nucleus
is taken to be prolate, as indicated by the small
B,y plot, and each intrinsic state (angular momen-
tum along the symmetry axis is ignored, implying
K = 0) has a collective rotational band corre-
sponding to rotation about the axis perpendicular
to the symmetry axis. The total angular momentum

is just that of the collective motion, we. In
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Fig. 3. Schematic vector diagrams illustrating the
deformation-aligned coupling scheme
(above) and the rotatjon-aligned coupling
scheme (below). The 3 axis is the nuclear
symmetry axis and the vertical axis is
takep to be the rotation axis, Tocated in
the T, 2 plane.

such bands the energy is given by
2 2
E(I) = R%/2e + E0 ~[7[2e + E0 (8)

where 6 = 37h2, Eo is a band-head energy, and

one is neglected compared with I. These are just

parabalas centered on the y-axis and displaced
vertically by Eo‘ The y-ray energy in such a

band is related to the slope of this parabola:
2 (9)

where & is assumed to remain constant. The
difference between successive y-ray energies is

related to the curvature of the parabolas:

C10-5
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AEy(I)=2 it

_ o )
a1

_8
=% (10)
6

and is independent of spin for a perfect rotor (e
constant).

In the upper right portion of Fig. 4 a small
amount of single particle angular momentum aligned
along the rotation axis, ja, has been added.

The orbits of these particles are roughly in the
plane perpendicular to the rotation axis, and will
cause a bulge in the otherwise prolate nucleus.
Thus the nucleus necessarily becomes slightly tri-
axial as indicated in the small g,y plot. The
total angular momentum is now the sum of the

collective part, we 1 and a single particle

col
part, Zja. The energy of the bands is given by:

E(1) = R%/20.077 * E(3,) =
(1 - 3,)%20 3 * EGG,) (1)

where E(ja) is the band-head energy and e for
the collective rotation is specifically labeled
811" These are parabolas whose horizontal
displacement from the y-axis is ja and whose
vertical displacement is E(ja). The solid lines
in Fig. 4 represent these bands. If one assumes

ja and o 1 to be fixed in each band, then

col
the collective E2 y-ray energy is again just twice

the slope of these bands and is given by:

_MI-3)
26c011

dE(I

e (1) = 2 {1 (12)

Ja’eco11

The assumption of constant ja and 8011’ need

not be valid, since these guantities could change
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Fig. 4. Schematic excitation energy vs spin plots for various

relative amounts of collective angular momentum and
single-particle rotation-aligned angular momentum.
Bandhead (pure single-particle) energies are shown in
the lower two panels. The solid curves correspond to
real bands, whereas the dashed curve is the envelope

of the real bands.

gradually within a given band, however there are
now both experimental and theoretical reasons to
believe this is a reasonable assumption. The
normal form for writing eqn. (12) was given as
eqn. (9); and since the aligned angular momentum,
ja’ is not usually known, one generally just

uses eqn. (9), and e becomes an "effective" value,
8off> defined by this relationship. There is no
displacement, ja, in egn. (9), so that it corre-
sponds to the envelope curve (dashed) in Fig. 4.
Thé average slope, and thus Ey(l), are the same
for this envelope and for the populated portion
(near the envelope) of the real bands, so that one
cannot distinguish the real band structure this
way. From the y-ray energies, one gets only the
properties of the envelope, which are the approp-
riate values to compare with those for the rigid

«classical rotors discussed in connection with

Figs. 1 and 2. The fact that there is aligned
angular momentum inevitably reduces the collective
(band) moment of inertia, as a given particle
carinot contribute fully to both the alignment and
the moment of inertia. Thus the curvature of the
real bands in the upper right part of Fig. 4 is
larger than that of the envelope. This curvature

is still related to differences between y-ray

energies:
dE_(1)
AE (1) =2 X~
Y a |
Ja*Ycol
d%E(1)
=4 5 = 8/6 n (13)
s |, co
Ja*Ycol1
Note that this difference is sensitive to ®.011°

but must be between two (correlated) y-rays within



the same band, and cannot be a difference of

There are now experiments

sensitive to this curvature,s’6

average y-ray energies.
and Bent Herskind
will discuss them tomorrow. The pattern illustra-
ted in this portion of Fig. 4 has considerable
experimental support. The sketched band crossings
correspond to backbends, the first of which in
the yrast sequence is very well studied, and the
second in this.sequence has been seen in several
cases. In a few nuclei, as many as four or five
backbends have been observed in bands above the
yrast 1ine. This behavior will be discussed by R.
Bengtsson and others this afternoon. It is clear
that rotational nuclei generally behave this way.
In the lower left part of Fig. 4, the alignment
process is assumed to continue. The nucleus is
moving toward an oblate shape as more particles
align and thereby move in roughly circular orbits
perpendicular to the rotation axis. The total
angular momentum is now mostly aligned, Zja,
with only a modest collective contribution. The
band head energies are indicated as dots, and they
have moved out rather close to the envelope line.
As sketched (somewhat arbitrarily), there is only
an average of 6 or 8h in the bands at, the spins
where they are likely to be populated (along the
envelope). The band heads were not indicated in
the previous panel (upper right) where they were
rather far from the envelope line--15-20h on the
average—corresponding to a considerably larger
collective contribution to the total angular
momentum. The curvature of the bands is much
larger now since the shape is becoming more oblate,
and the rotation axis will then become a symmetry
axis.

Another way to view this is that most of the

reasonably high-j particles are aligned and thus no

longer contribute to the collective moment of inertia.

These bands show a much higher rate of crossing,

and although the slope (eeff) behaves regularly,

C10-7

the detailed band structure will be quite irregular.
It is'worth emphasizing that the y-ray energies
alone cannot distinguish among these first three
panels; one must look at the y-ray energy correla-
tions.

Finally in the lower right part of Fig. 4 the
nucleus has acquired an axially symmetric oblate
shape-~the rotation axis has become the symmetry
axis and collective rotations cannot exist about
this axis. The band heads now scatter around the
envelope line and are purely single-particle states.
At 8 = 0 these would be the usual spherical shell-
model states, but reasonably large g values may
also occur. Such states are observed in several
regions and will be discussed later by Khoo and
others. We have thus followed the motion from
collective to non-collective in a continuous way
by aligning more and more particles.

Several comments about this transition should
be made. First the general pattern as more angular
momentum is added would be to progress through the
panels aligning more and more particles. However,
this can be altered at any point by shell effects,
just as the starting prolate shape is due to a
shell effect. Furthermore, at some high spin the
1iquid drop model suggests that the nuclear struc-—
ture will be dominated by shapes with very large
prolate deformations—prior to fission. These
will produce a "bending over" of the envelope
curve and probably a shift to less alignment. A
number of us are hunting for this "giant" back-
bend. Finally, in the last panel, and perhaps the
next-to-last one, there can be important collec-
tive rotations about the perpendicular axis,
provided g8 is not too small. At high spins the
bands corresponding to this rotation rise rather
steeply off the yrast line, and it is not clear
what role they will play. In the lower left panel,
these combine with the bands shown to give the

2
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well known behavior of a triaxial rotor. One
could expect M1 transitions from such bands when
the amount of collective angular momentum is
small, and the presence of two types of E2 transi-
tions might tend to smear out the regular

rotational behavior.

This sequence of events is not the only one
possible. There can be prolate nuclei rotating
about their symmetry axis (band heads in the first
panel) or, the collective rotation of oblate
nuclei (mentioned briefly above). However, the
sequence discussed traces out the situations
favored by the liquid drop model. One expects
these to be the most common, if not the only, com-
binations of collective and non-collective motion
at high spins. Furthermore there is good evidence
that nuclei do exist with behavior like that shown
in the first, second, and fourth panels. I

believe we now have the experimental tools to

determine whether nuclei at the very highest spins
fall into this sequence, and if so, where. The
next few years should thus be exciting ones in the

study of very high-spin states.
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