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Groupe de Recherche n°4 du C.N.R.S., "Physique des Liquides et Electrochimie’, Université Pierre
et Marie Curie, 4, place jussieu, 75230 Paris cedex 05, France.
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Abstract. - Surface energy and surface tension of liquia metals are calculated by applying to liquid
surface a simple appropriate form of the lang and Vohn's approach. Resulting values are in reasonable

agreement with experiments.

Despite theoretical and technological interest
in the study of the surface of liquid metals, few
works are devoted to its statistical mechanical
description. Lang and Kohn [1] (hereafter referred
to as L.K.) have used the Hohenberg-Kohn-Sham
theory to calculate the electronic profile n(z)
in a semi-infinite positive jellium background.
The results they obtain for the surface energy
computed on solids are in good agreement with the
surface tension of liquids extrapolated to 0°K.
Evans [2] has extended to surface properties the
description’of the liquid metals in terms of
pseudo-atoms. In this model, the electronic profile
is given a priori and there are no electrostatic
contributions, which are found to be important in
L.K. Both of these authors take no account of the
transverse collective plasmon modes, this point
being a subject of much controversy.

In this paper, an approach to the liquid
surface is proposed in the frame of Lang and
Kohn's formalism, The liquid nature is taken into
account by an ionic density profile p(z) of step
function tyge»and a simple pair correlation
function g(RfRZ)' The electronic density profile is
computed by optimization of the zeroth-order
surface energy. Computed properties are surface
energy Us and surface tension Y for several simple

metals.

1. Model

—— +

For a given configuration {RN} of the N ions,

and in the adiabatic approximation, the energy of
the system can be written as

H = H + E ({RN]) Q)

N
where Hi is the ionic hamiltonian and E({RN}) the
ground state energy of the many-electron system

in the external potential of the ions. As in L.K.,

>
we compute E({RN}) by considering the difference

between the pseudopotentials of the ion cores and
the electrostatic potential of the uniform back-
ground as a small perturbation. In the jellium, the
electron~ion interactions are purely coulombic.

Following the same procedure than Smith [3],
we assume that the form of the zeroth-order elec-
tron density no(z) is

n(z) =n0 - <

2

n()=n<% z >0
o 2

where n is the bulk electron density. The parameter
a is obtained by winimization of the functional
E°[n] corresponding to the reference system
(jellium) with conservation of the total number

of electrons. Eo[n] includes kinetic, exchange-
correlation and electrostatic energies plus an
inhomogeneity term which doesn’t exist in L.K,

To first order in the perturbation, (1) becomes

H=H +Eln (D] +E [n (2, &} wiew

> N > > -
El[no(z),{RN}]= Iiil N(Ri—r)no(z)dr +

o (zd)n (2'") N
L o dr dr' (4)

zj**'
where W Es—tze electron-ion pseudopotential, Z the
valence of the ion and po(z) the jellium density
profile (in this paper all formulas are given in
atomic units). Hi includes the kinetic energy of
the ions,theircoulomb energy and a Born-Mayer type
potential which represents the core repulsion.

In order to find the internal energy of the
system, one has to take the statistical average
of (3) over the configurations {;N}. With no
adsorption on the Gibbs dividing plane, the
surface energy Us can be obtained from experiments
by the thermodynamic relation US =y -T %% .

US can be written as the sum of four

contributions
=U_+U

s o ps * Uc +v )

B.M
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- U is the surface energy of the reference
system, obtalned from E [no(z)] and the self
electrostatic energy of the jellium, by substrac-
ting the bulk contributions. When using Pines-

Nozieres formula for exchange-correlation terms we

have n5/3 4/3
= - = 25037 — +
U0 1.6423 m + 0. 3 o
n Log 2 mn
0.006584 = + no —E—= + —s (6)

. q . . .
The values obtained for a by minimization are very

close to Smith's ones.

as 6&¢

- U , which has the same definition ps
ps

is associated to E [n (z), {RN}] and

As in

in L.K.,
depends on the ionic density proflle p(z).
Fowler's model we assume for p(z) a step function.
1f we adopt the local Aschroft pseudopotential, we

have for U

s 312 -
U =P (1 —aR_-e 0tRC) N
s a3 c .,
where Rc is the cutoff radius.
- U , which can be compared to the classical

c’
cleavage energy of solids, represents the ionic

part of the surface coulomb energy minus the ionic
part of the surface energy of the jellium, already
in Uy

U= fE pl30)p(30) g(F, &) 3,47,
-34 L 9a(ta)d
-3/ gg [g‘zug(w - B335, 4, ®)

where BKKIZ is the radial distripution function

(r.d.f.) of the bulk liquid and p the bulk ionic
density.

To go further, some appropriate approximations
for g(ﬁ s R ) still have to be made. If we take
g(R}, R,)
the electroneutrality condition that the charge,

= gB(RIZ) as in Fowler's model, we violate

>
ions and electrons, surrounding an ion at R1 should

be -2 :

[z oGy g(R,R,)

Violation of the condition can have drastic conse-

- ny(z)] dr, = - 2 @)

quences in coulombic systems as shown by one of us
(J.G.) [43 ; we incorporate electroneutrality
-
into g(Rl,RZ) by writing
1=[g @y - 1] £ £y

Substituting into (9) gives an integral equation

> >
g(R,R,) -

which may be solved iteratively starting with
f(o) = 1. The first iteration yields

> -1
£ 2y = [fots) Loy - 1] a %, ] (10)
and replacing f(zl) f(zz) by f(l)(zl) f(o)(zz) gives

from'

results close to those from a more accurate choice
[

In the bulk fluid,
well described by an "effective" hard-sphere poten-
tial,

correlations for small r are

Here we use for the r.d.f. gB(r) of the bulk
phase a simplified form

gB(r) 0 rfo ; gB(r)= glr) ogr< $§

gB(r) =1 s

where g(0) is given by the Percus-Yevick equation

and § is calculated from the relation (see eq. 9) :
A > -1

feer - - -

With all these assumptions, we can write after

. 11 4
numerical integration UC =n2Za (n (1)

This form is similar to Lang and Kohn's
cleavage energy. a(n) which depends only on the
packing fraction n = %-003 is given in Table 1 for

different values of n

(n :a(n) :b(n) ) Table I
Eaj;_.a_a;a:ataggg Variation of a(n) and b(n)

(0.35:0.036:0.037) with the packing fraction n.

(0.40:0.068:0,039)
(0.45:0.099:0.040)
(0.50:6.131:0.041)
( : : )

- UB.M the last contribution to US, comes
from Born-Mayer energy. We have found that this
contribution is negligible because its range
(about 2 Rc) is generally much smaller than o,
when we take for n values appropriate to liquid
state.

Starting from (3) it is possible to define
the free energy of the system and calculate its
surface tension Yy by differentiation. Using the
standard procedures and arranging the different
terms in Yy as we did in Us’ we get after some

algebra
Y= Uo v s * Yc * YB.M (12)
=nZb (n) (13)

The variation of b(n) with n i§ given in Table 1

with Y.

(detailed calculation for a(n) and b(n) will be
given elsewhere [6] ). For the same reason as

before, the Born-Mayer term Y5 M is negligible.

2. Results for U and Yy

Our results for Us and Y are given in
Table II for several metals and compared to expe-
riments., The different contributions are also
given. The values of n and Rc are the same as in
L.K. for easier comparison. Experimental values

are taken from L.E. Murr [S] .



E Uo t Upg t Ug t Ug :UG¥P: v 1y Yexp;
( Cs 51 -21: 90: 120: 88: 81i: 111: 60 )

101: 134: 76
118:

145
171:

-29: 104

-30:

( Rb : 62: 112: )
(K s 70: 131 138: )
( Na : 115: -84: 254: 285: 228: 228: 259:191 )
( Li : 143: =143: 467: 467: 461: 420: 420:398 )
( Mg : 51: =775:1726:1002: 835:1553: 829:540 )
( Zn :-251:-1560:2630: 819: 888:2367: 556:770 )
( Al :-795:-2368:5442:2279:1302:4897:1734:866 )

Table II - Different contributions to US and

vy for simple metals. Units are dyne/cm.

Values of UO are similar to Lang and Kohn's
results, although the partition between the va-
rious contributions may be quite different (in
L.K. there is no gradient expansion term which gi-
ves here, for instance, 26 dyne/cm for Cs and
500 dyne/cm for Al).

The pseudopotential comntribution UpS is ne-
gative, in opposition to L.K. in the case of the
lattice model. Ups is rather sensitive to the
choice of Rc’ especially at high density : for Al,
a modification of 10 7 in Rc changes Us an vy by
350 dyne/cm. The presence of oscillations in the
electronic profile may substantially modify the re-
sult for UpS [1]. To test the order of magnitude
of this effect, we have used in Ups another form

of no(z) :
z

n(l - pe? z <0

_Bz

nve z >0

no(z) cos Zsz)

(13)

n,(2)

This form roughly simulates Friedel oscilla-
tions, although they have no exponential decay. Unk-
nown parameters are obtained by continuity conditions
of no(z) and dno(z)/dz at z = 0, and overall electro-
neutrality. Oscillations in no(z) give an increase of
15 for Cs and 1800 for Al.

77 dyne/cm in Ups for Li,

For all metals, U__ remains negative, unlike the cor-

s
respouding term iﬁ L.K.

. The contribution U, is very sensitive to the va-
lue of the packing fraction 1, as shown in table 1,
through the variation of a(n). Bulk thermodynamic
properties of liquid metals are known to be well
described by putting n = 0.45 in the hard sphere
model. With this value, Uc becomes the main contri-
bution to the surface energy. For Al, Uc=12447
dyne/cm when Us = 9284 dyne/cm, and for Cs

u, = 205 dyne/cm, when U, = 235 dyne/cm. This con-
tribution is much greater than the cleavage ener-
gies of Lang and Kohn, corresponding to the [111]

plane for f.c.c. lattice and [110] plane for b.c.c.

C8-785

lattice. It is comparable to cleavage energies cor-
responding to less densely packed faces.

metal it is in fact difficule

. For a liquid
to consider that the ions near the surface are cor-
related as in the bulk where they are totally
screened by the electrons.

If the description of correlations in terms
of a hard sphere model remains valid near the sur-—
face, we can expect a value of O somewhat smaller
than its value in the bulk, and then effective va-
lues of 1 smaller than 0.45. It is clear that an
effective value of n takes into account other ef-
fects, such as a modification of the step density
profile as suggested in [7], or Higher order con-
tributions to the energy of the system. On the
other hand, we note that Y, is less sensitive to
the variation of n than Uc'

Rather than fitting n for each metal as
done in [7], an average value of n = 0.36 has been
taken in table 2. With this value, the magnitude
of calculated results for Us and Y are in reasona-
ble agreement with experimental data. We emphasize
that our model permits us to compute simultaneously
US and Y and it is satisfactory that with the same
ingredients, their magnitudes are at least reaso-
nable and close one to the other. This is not the
case with other treatments nevertheless the remaining
difference cannot be attributed to the influence of
the temperature (entropy term ), because in this ap-
proach Us and Y depend on T only through the bulk
densities which are rather independent of T. A more
realistic treatment of the ionic profile should con-
sider its dependence with temperature, in order to
satisfy the thermodynamic relation

U o=vy-1T g%.

In our calculations, it is clear that chan-
ges in the two profiles may induce notable modifi-
cations in the different contributions to U  and y.
A self consistent determination of the two ;rofiles
is in progress [8].

Our calculations also show the importance of
respecting the electroneutrality condition when
approximating the anisotropic pair
g(ﬁl, §2)°

We finally note that our model gives rise to

distribution

a dipole barrier at the surface, in contrast to
the work of Evans [2]. The values of the dipole
barrier are the same as

[3].

those computed by Smith
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All these results show that this simple mo- (5] MURR, L.E., Interfacial Phenomena in Metals and

del may be considered as a usefull step in the alloys. Addison Wesley Pred. Com. London 1978.
AMOKRANE, S., BADTALI, J.P., ROSINBERG, M.L.,

GOODISMAN, J. (to be published).

understanding of thermodynamic surface properties (6]
of liquid metals.

[7] ITAMI, T., SHIMOJI, M., J. Phys. F., 9, LIS
REFERENCES 2
REFERENCES (1979).

11 LANG, N.D., ROHN, W.,Phys.Rev.B,1, 4555 (1970).
[ ’ ’ > MR 2= ¢ [8] AMOKRANE S., Thése 3e cyele.

[2] EVANS, R., J. Phys. C, 7, 2808 (1974). Bl
- 9| GOODISMAN, J. , PASTOR, R.W., J. . Chem. 82,
[3] SMITH, J.R., Phys. Rev., 181, 522 (1969). , J. Phys. Chem. 82

2078 (1978).
[4] PASTOR, R.W., GOODISMAN J., J. Chem. Phys.,68, ( )

3654 (1978).



