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GROUND-STATE PROPERTIES OF 3Het AND D+ WITHIN THE METHOD OF CORRELATED BASIS FUNCTIONS

J.W. Clark, E. Krotscheck™ and R.M. Panoff

McDonnell Center for the Space Sciences and Department of Physics, Washington University

St. Louis, Missouri 63130, USA.

% Department of Physics, State University of New York, Stony Brook, New York 11794, USA.

Résumé.- On Qtilise des techniques d'équations-intégrales avancées, comportant des resommations de
chaines dans ‘la théorie HNC, pour en déduire les propriétés des modéles variationnels de Jastrow
pour les dtats fondamentaux de 3Het, de 3He non polarisé et des deux espéces de D+. On donne les
résultats pour 1'énergie en fonction de la densité, pour la fonction de structure_dg Tiquide et
(dans certains cas) pour la masse effective, 1a susceptibilité magnétique et les glemgpts de ma-
trice de formation de paires. Les résultats indiquent qu'il sera nécessaire, part1cg11eremept pour
3He non polarisé, d'ailer plus loin que Te modéle de Jastrow pour obtenir une description micros-
copique quantitative de ces systémes. On décrit les efforts préliminaires qui ont éte fa1?s en vue
d'incorporer des corrélations dépendant de 1'impuision et du spin (et plus généralement d'autres
corrélations non incluses dans le modéle de Jastrow) & 1'aide de la méthode des fonctions de base

corrélées, (CBF).

Abstract.— Advanced integral-equation techniques, including Fermi hypernetted-chain resummation,
are used to derive the properties of Jastrow variational models of the ground states of °Het,
unpolarized *He and two species of D4. Results are reported for the energy as a function of
density, for the liquid structure function and (in some cases) for the effective mass, magnetic

susceptibility and pairing matrix elements.

The results indicate that it will be necessary,

particularly for unpolarized 3He, to go beyond the Jastrow model to achieve a quantitative
microscopic account of these systems. Preliminary efforts toward the incorporation of momentum-
dependent, spin-dependent and other non-Jastrow correlations by means of the method of correlated

basis functions are described.

1. Introduction.— In this paper we explore the
properties of a Jastrow variational model of the
ground states of the following highly quantal

(a) ordinary, spin-saturated 3He, (b)
3

systems:
fully spin-polarized “He and {(c) two analogous
species of spin-polarized D. The predictions of
the model for such quantities as the ground-state
energy, the liquid structure function, the single-
particle energies and effective mass, the magnetic
susceptibility and the effective pairing matrix
elements are presented as functions of density.
The techniques of Fermi hypernetted-chain theory
/1-8/ are applied to the evaluation of these
quantities. Comparing with experimental results
on real, spin-saturated liquid 3He, it is found
that for this system the Jastrow description has
certain clear deficiencies, which are associated
with the absence of momentum-dependent (or back-

flow) and spin-dependent correlations from the

Jastrow ansatz. Nevertheless, the various theo-
retical results indicate that the Jastrow model
still contains much of the correct physics of
strongly-correlated Fermi systems evenatrelatively
high density, providing a useful vantage point
from which more quantitative descriptions may be
sought.

The search for more realistic and more com-
prehensive theories may, for example, be carried
out within the framework of the method of corre-
lated basis functions /9-11,7,8/ (CBF) either by
means of (i) nonorthogonal CBF perturbation theory
/11-13/ or via (ii) a more powerful scheme which
implements the coupled-cluster (or exponential-S)
procedure in the CBF context /14/. We report here
on some features of the beginnings of a theory
following path (i) (which may be looked upon as a
renormalized version of an earlier approach of Woo

/13/ and Tan and Feenberg /15/). As an alternative
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to CBF theory, one may of course elaborate on the
variational description, incorporating backflow
/16/, spin-dependent /17,18/ and other non-Jastrow
correlations directly into the ground-state trial
function.

2. The Jastrow Model.— We focus our attention on
the Jastrow model of the ground state of a Fermi
fluid, which is based on a trial wave function of
the form

¥, = Fe . m
In the present applications, @0 is the ground-state
wave function of the noninteracting Fermi gas at
density o =vk§/6ﬂ2, where v is the single-particle
level degeneracy, i.e., the number of particles
allowed in a given cell of k-space. Correlations
due to interactions are introduced by means of the
operator F, which, in the Jastrow case, is taken
as the superposition

F=10 f(ry;) (2)

of r;;%, state-independent two-body correlation
functions. Ideally, the correlation function f(r)
should be determined (optimally) by solving the
variational problem

SE[fl/8f = 0 , (3)
where the extremum of
E[f] = <H> = <\y0|HI‘¥O>/<‘¥o]‘Po> (4)
is supposed to be a minimum. In practice, the
Euler equation (3) and the expectation value (4)
must be approximated /19,20/ (or the variational
problem may be solved straightaway for a functional
approximating (4) /21/. A less ambitious and more
widely practiced approach involves minimization of
an approximate energy functional with respect to
the parameters in a suitably chosen analytic form
for f{r).

The exact energy functional (4)--in partic-

ular, its kinetic energy portion--can be expressed

in several different (but strictly equivalent)
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forms related by integral identities. The most
widely used are the Pandharipande-Bethe (PB),
Jackson-Feenberg (JF) and Clark-Westhaus (CW) forms.
Detailed expressions may be found in /1/ or /4/.
These expressions give <H> in terms of the two- and
three-particle radial distribution functions g(rlz),
g3(r]2,r13,r23) and portions of them involving the
Slater function Z(kFr)= 3(kFr)'3(sinkFr- kFrcoskFrL
and of course also in terms of the assumed two-
particle potential v(rlz), the correlation, function
f(rlz) and the particle mass m. In general, if
approximate versions of g(r]Z) and g3(123) are
inserted, the three expressions <H>PB, <H>JF and
<H>Cw will not agree. The discrepancies give some
measure of the inconsistency of the approximate
evaluation of the distribution functions--in par-
ticular, a measure of the violation of the BBGKY
relation between g and 94 /22/.

Construction and analysis of approximations
to the distribution functions (and therewith the
energy expectation value) are facilitated by a
configuration-space graphical scheme analogous to
that used widely in the statistical theory of clas-
sical fluids /23,24/. The building blocks for g
{and 93) are (sub)diagrams with two external
(labeled) points, say ij. In the present case of
Fermi statistics such diagrams may contain two
kinds of line elements, namely dynamical correlation
lines corresponding to factors fz(r)- 1 and statis-
tical correlation lines {exchange lines) correspon-
ding to Slater factors i(kFr). Fermi 1j diagrams
are therefore classified not only according to
their topological structure (nodal as opposed to
non-nodal /23,1/) but also according to whether a
pair of exchange lines (one entering, one leaving)
is present at neither ("dd" diagrams), one ("de"
diagrams) or both ("ee" diagrams) of the external

points /1/. The sums of all contributing non-nodal



diagrams of the indicated exchange classes are
denoted, respectively, de(r), Xde(r) and Xee(r)
{where r= |ri-rjl). It is convenient also to in-
troduce a fourth exchange class, comprised of ij
(sub)diagrams in which there is a continuous
exchange-line path running from i to j (or vice
versa), possibly through intermediate particles,
but no return path closing the exchange loop.
These are called "cc" diagrams; excluding the
graph consisting of a single & line joining i
and j, the sum of all contributing non-nodal
diagrams of this category is denoted ch(r).

The compound-graphical objects Xxy(r), with
xy € {dd,de,ee}, are found to be the central in-
gredients of the diagrammatic analysis, in the
sense that once they are known, the distribution
functions (or more conveniently the corresponding
static structure functions) can be calculated from
exact, closed formulas /2,6,1/. For example, the
structure function
s(k) = 1 + prlg(r)-13e'5°L qr (5)
can be obtained from
S(k) = [1+X o (K)IS4(k)/1- Xy (k)] o
sg(k) = QU+ [T+ X () TF (K101 - K (k)T
Fyq(k) = R gy (A0, ()12 - Ky ()D1+R ()T, (6)
where we have absorbed a factor p in forming the
(dimensionless) tilde Fourier transforms, ixy(k)
= prxy(r)exp(igfg)dg, etc.

The Fourier transforms of the sums of allowed
nodal diagrams of the various exchange classes are
also simple function of the ixy(k) (and of 2(k)):
Nyg(K) =T g (k) =Xy (k)
Ngol(k) = 8q(k) = 1=K, (k) - T yk) ,

Ngg (k) = S(k) - 25, (k) + 1-X (k) + T, (K),

oo (k) = X 00D TTE(K) - R (101 =R ()] . (7)
These are the Fermi chain equations, which build
the chain (nodal) functions ny by series connec-

tion of non-nodal diagrams.
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One popular scheme for calculating the key
quantities Xxy is the Fermi hypernetted-chain
procedure of Fantoni and Rosati /3/ (FR-FHNC).

The Xxy are in their turn represented in coordinate
space as simple functions of fz(r), z(kFr), the
nodal-diagram sums ny and the elementary-diagram
sSums Exy:
Xgalry =Tyqlr} - Ny4(e)
Xge(r) =147 4 (r)JE, (r) + Ty (PN (r)
Xog (1) = [1+ Ty (r)3-v" L2 (kor) - wil_(0) v (1)1

# INgg (1) # Egq (M) 12 4 Mg (r) + Egg (1)} = N (1),
Xee (1) = =970 (r) (R (kpr) -u_ ()]

+ [1+T(MIE (r) (8)
wherein
Faa(r) = F2r)explNygy(r) + Egy(r)3-1 . (9)
These equations express the formation of the non-
nodal X quantities by parallel connection of
"simple" (nodal or elementary) diagrams. (An
elementary diagram is a non-nodal diagram which
is topologically irreducible.)

In principle, equations (6) (together with
an analogous construction of the structure func-
tion S3 corresponding to g3), equations (8) and
equations (7) suffice to determine the Jastrow
distribution functions g and 93 {or S and 33)
exactly for a given correlation function f(r).
Indeed, solution of this set of equations would
generate the necessary ingredients for exact
computation of the energy expectation value in
any of its forms. However, these equations do not
actually supply a closed solution of the problem,
because the Exy are given only as infinite series.
In practice, therefore, successive approximations
are defined by feeding in successively more com-~
plicated sets of elementary diagrams. The simplest
approximation, explored by Fantoni and Rosati /3/,
Zabolitzky /4/ and others, consists of setting all

the Exy = 0. This approximation is termed FHNC/O.
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In the next step, elementary diagrams with four-
point basic structures are incorporated, giving
the FHNC/4 approximation; then five-point basic
structures are to be included (FHNC/5); and so on,
(For more precise specification, see, for example,
reference /1/.)

It turns out that such a scheme violates (at
every stage) certain long-wavelength asymptotic
properties /5/ of the quantities Xde(k) and &m(k),
namely
gelk) = 0010 o p k=0, (o)
1+ Ko (k) = Sp(k) + 0(K)
where SF(k) is the two-particle structure function
for the noninteracting system. These properties
are reflections of the Pauli exclusion principle,
i.e., the antisymmetry of the (Jastrow) wave
They may be established rigorously for

function.

the full Xde’ X _; they also hold in approximation

ee
schemes in which suitably chosen finite subclasses
of elementary diagrams are included (for example,
in the so-called KR-FHNC// approximations /1,6/).
Normally, for reasonable f, violation of (10)
by the FR-FHNC/0 approximation (or higher approxi-
mations within the FHNC/ scheme)} will not have any
serious effect on an evaluation of the ground-state
energy, since it is, predominantly, the Tong-range
behavior of the ingredients Xde(r), Xee(r) which
is at issue. However, other quantities of physical
interest (e.g. S(k) at small k) are more sensitive
to Pauli violations. Moreover, when we turn to
the variational problem (3), and the implications
of its behavior for the stability of many-body
states, it becomes especially desirable to take
proper care of the asymptotic conditions (10).
To this end, we shall make use of the FHNC/C

approximation devised by one of us /6/. Let the

de?® Xee

equations (8), be designated fég, iég; then the

FR-FHNC/0 approximations to X » as given by
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effects of the omitted elementary diagrams, re-
quired to ensure (10}, are estimated by using in-
stead the “corrected" approximations

3/C +/0

+/C 2¢03/0 2008, ~

X/S(k) = SECORLO(K) - [SE(k)-1I0S(K)-11 . (1)

In all cases in which the relevant elementary

diagrams have actually been calculated, this
estimate has proven to be accurate to within a few
percent /6/. The FHNC/C approximation to the con-
struction of the distribution functions consists
in modifying the FHNC/0 scheme simply by the use
of (11) for Xde and Xee in the chain equations (7)
(and only therein).

The Euler equation (3) may be subjected to a
graphical analysis which parallels that already
executed for the distribution functions entering
<H>. Indeed, (3} assumes the form
-t2/amvPg(r) + g'(r) = 0, (12)
where g'(r) is a generalized two-particle distri-
bution function which may be formally constructed
by a process of graphical differentiation, indi-
cated throughout by a prime, applied to the dia-
grammatic representation of g(r) /5/. We shall
not enter into the details here, but it is important
to note that the explicit definition for ¢'{(r)
depends on the expression (PB, JF, CW) adopted
for the kinetic energy portion of <H>, and ac-
cordingly so do the new sorts of line elements
introduced upon graphical differentiation of g.
The optimizations carried out in the present study
are based on the JF form for <H>. In that case,
each g' diagram will contain (i) a single effective
interaction line representing vJF(r) = v(r)

- éﬁz/Zm)Vzlnf, or (ii) a single differentiated
exchange line representing (ﬁz/Zm)vzz(kFr) or
(iii) a single connected pair of differentiated
exchange lines representing Gﬁ2/2m)vi£(kFrij)

2

'Viz(kFrik)’ plus assorted -1 and 2 lines.



It is more convenient to work in Fourier
space, the Euler equation becoming
w(k) = 22 am)[s(k)-11 + S'(k) = 0 , (13)
where $'(k) =pfg' {r}exp(ik-r)dr is the generalized
structure factor corresponding to the generaiized
distribution function g'(r). By diagrammatic
anaiysis-—or formally by functional and graphical
differentiation-~we may establish a rigorous de-
composition of S’'(k) analogous to (6), in terms
of S(k), Sd(k) and the primed counterparts Xéd(k),
i&e(k) and iée(k) of the non-nodal quantities
de(k), Xde(k) and Xee(k). Equations analogous
to (7), derived in a similar manner, give ﬁ&d(k),
ﬁée(k), Née(k) and Néc(k) in terms of the primed
X's and the various unprimed quantities already
introduced. Finally, by graphical differentiation
of (8), we obtain a set of linear equations for the
key quantities X;y. (These are called the FHNC-
prime equations, or simply the prime equations.}
We thus arrive at an array of coupled equations,
namely (6)-(9) and their primed counterparts (6')-
(9'), which, in conjunction with the Euler equation
(13), determine in principle the optimal correla-
tion function f(r) as well as the corresponding
two-particle structure function S(k), and there-
after the optimal Jastrow distribution functions
and energy expectation value. Again, however, the
problem of the elementary diagrams, appearing in
the infinite series E

Xy
Schemes for the incorporation

and E;y’ must be faced in
actual calculation.
of E;y diagrams run parallel to those of ordinary
FHNC theory.

Corresponding to (10), the primed E's are
responsible for the maintenance of the rigorous
long-wavelength properties
Xio (k) = 0(k)
X:o(k) = 0(k?)

As indicated earlier, it is desirable to observe

(k > 0%) . (10")
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such properties when formulating the Euler problem.
Accordingly we extend the FHNC/C prescription for

correcting the FHNC/O approximation, supplementing
(11) by
i
ALY

n

~,/0
sp (03300
S2(k)KL0(k) + (2K /am) [ (K) = 11}
- @A am)sp(k) - 1] . (1)

Means for realizing a practical numerical

U

treatment of the Euler equation {13) will be de-
scribed in a separate article. We remark that J.
Owen has already published work along similar
Tines /19/.
3. Beyond the Jastrow Description.— The Jastrow
model is expected to describe rather well some
aspects of the strong spatial correlations among
particles in a quantum fluid. However, since the
assumed correlation operator is state independent
(meaning it involves only the rij) and contains
only two-body factors, such important phenomena
as backflow and spin-density fluctuations will be
inaccessible to this model. One would like to
have some way of incorporating state-dependent
(as well as direct three-body, four-body, ...)
correlations into the theory without giving up
the successful aspects of the Jastrow approach.
Systematic procedures for correcting the Jastrow
model may be formulated within the method of cor-
related basis functions /9-11,7,8,14/ (CBF).
Discussion of this method will be confined to the
aspects needed for a general understanding of the
results to be presented in the following sections.
We extend consideration from a single

Jastrow-correlated wave function (1)-(2) to a

basis of such functions,

>
V= 12 173; flrij)o, » (14)

normalized to unity by

Tom

m

<¢m{nf2(qj)’¢m> s (15)

the ¢m constituting a complete orthonormal set of
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Fermi-gas energy eigenfunctions. The Tabel m

identifies the collection of plane-wave single-
particle states occupied in the Fermi-gas function
¢m, with m=o0 denoting the filled Fermi sea. In
terms of the correlated matrix elements Hon =
<wm|H]¢n> and N = <¢m]¢n> of the Hamiltonian
and unity, a perturbation expansion for the ground-

state energy E may be generated,
2
l

IH -H N
E=H - —mo_oomo_ ., .., (16)
00 mz"'o Hom = Hoo

the higher terms involving more and more factors

of H -H N or N (1-6 ). It is seen that the

mn 00 mn mn mn
leading term is just the Jastrow energy expectation

=<H>. Here we shall concentrate on the

00
next term, the negative semi-definite second-order

value, H
perturbation correction to Hoo We further restrict
attention to m labels which differ from the Fermi
sea 0 in exactly two single-particle orbitals.
{Therefore we include only the effects of "cor-
related two-particle-two~hole states".) The re-
sulting correction is denoted SE(Z’Z).

Two of us /7/ have carried out an extensive
diagrammatic analysis of the quantities Nmn

for choices of m,n in-
(2,2)

H mn HOO Nmn

cluding those needed for the evaluation of SE

and Hmm‘“nn

Denoting by My M, and 045 0, the orbitals inwhich
m and o differ, the relevant results are conve-
niently expressed in the forms

Hmm' Hyo = e(m])+ e(mz) - e(o]) - 8(02) R

Hoo HooN 0" <m1mle(12)|o]oz- 0,01> 5 (17)
where the €'s are interpreted as single-particle
energies and V(12) is a (non-local) effective
interaction. The derivations of reference /7/ were
based on the Clark-Westhaus (CW) form for the CBF
matrix elements Hmn’ because of the formal simplic-
ity of that choice. In the meantime, the analysis
has been extended to the Jackson-Feenberg (JF)

form, which we regard as generally the most
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reliable (least sensitive to errors, particularly
in the g« g, connection /22/) among the three
choices PB, JF, CW. In the CW case, the single-
particle energies are found to have a very simple
structure in terms of the quantities already in-

troduced in optimal FHNC theory, namely

f‘ k (1%, (18)

The JF

+ X (k)/[l

is a constant, 1ndependent of k.

e(k) =
where U0
result is a bit more elaborate, containing addi-

tional terms

2,2 .
Ak
LS (k)+2mv ey (MmN ) (19)
where { }F stands for Fourier transform, and a

[3]

further (small) contribution e arising from the
three-body part of the Jackson-Feenberg kinetic
energy operator. The single-particie energy e(k)
determines an effective mass at the Fermi surface
via

/= [de(K)/dkTy, - (20)
We shall take m* to be the effective mass predicted
by the Jastrow model.

The non-local effective-interaction operator
has the structure
<m]mﬂv(12Mo]oz-ozo]>-=<m]m2|w(12)[o102-0201>+

+ glelm Yre(my)-e(o;)-€(0,)1-

-<m]m2lN(12)|o]oz-ozo]> . (21)
where W(12) and N(12) are again non-local operators,
In detail, the latter operators are rather compli-
cated; however, W(12) may be determined from N{12)
by the graphical differentiation process. The
matrix elements of N{12) are found to contain
factorizable diagrams, implying the structure

<m]mle(12)lo]02-ozo]>

: <m]m2|NB(12)|o]o2 - 050>
~ -~ -~ ~ 1
{[1-ch(m])][1-ch(mg)][1-XCC(O])][1-ch(02)]}/2
(22)
where NB(12) is the irreducible, basic portion of

N(12) as defined in reference /7/; and similarly



for the matrix elements of wW(12)=N'(12). The
leading contributions to NB(IZ), wB(12) are their
local parts; these are simply expressible interms
of primed and unprimed quantities already en-
countered. In fact, it was in the CBF context
/7/ that FHNC-prime equations for the X;y were
first derived (albeit for the CW kinetic energy
operator). It is of course natural that the in-
gredients of the CBF perturbation corrections,
in their detailed struéture, are related to the
ingredients of the Euler equation for the optimal
f(r). A comparable, though much less complicated,
situation prevails within the paired-phonon
analysis by Feenberg, Jackson and Campbell /10,25/
for the optimal Jastrow treatment of Bose systems.
In the actual calculations ofNB(lz)and wB(lz)
we have included, along with rdd(rlz)and Féd(rlz)’
certain tractable "elementary" contributions
(see Fig. 5.4 of reference /7/), as well as the
effects of separable three-body contributions.
The subsequent preparation of 6E(2’2) for numerical
computation follows an essentially standard pattern
/26,27/: partial-wave analysis, angle-averaging,
quadratic approximation of hole energies e(k),
k<kg, etc. However, in contradistinction to the
procedure of ﬁeference}/27/, the particle energies
e(k), k> kF’ are not taken to be simply the free
energies‘ﬁzkz/Zm but also include the constant
term Uo' (It is to be noted that above the Fermi
surface the remaining terms in the e(k) formula
rapidly become negligible compared to the free
kinetic energy.) A more thorough discussion of
these matters will be presented in another article.
One qualitative fact emerging from analysis of the
structure of SE(Z’Z) should, nevertheless, be men-
tioned here. When this correction is reduced for

the special case of optimal f, making use of the

Euler equation w(k)=0 and introducing and subtrac-
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ting out an inverse energy difference <e-1>averaged

over holes, one may isolate a contribution attrib-

utable to non-central (angle-dependent) correlations,
a contribution apparently related to backflaw.

We conclude our outline of formal methods by
pointing out that the results of reference /7/ for
the non-diagonal CBF quantities Nmn’ Hmn'Hoonn and
Hmm"Hnn not only yield the inputs necessary for
estimation of the CBF perturbation corrections to
the Jastrow energy, but also provide further valu-
able information on the Jastrow model itself. This
has already been seen in the case of the Jastrow
effective mass. To cite a more elaborate example:
as shown in reference /8/, one may test the sta-
bitity of the Jastrow ground state against pair
condensation in various partial waves, in terms of
effective pairing matrix elements derived from the
operator W(12). In a third application (which by
no means exhausts the interesting possibilities),
one may determine the magnetic susceptibility x of
the Jastrow model from CBF matrix elements. If the

CW form is assumed for the Hmn’ the simple formula

g 1
< = w1 80sg)] (23)

(applicable to unpolarized 3He) is obtained, where
Xg is the magnetic susceptibility of the free Fermi

gas and 6(150) is the dimensionless effective

1

pairing matrix element in the S0 channel, derived

from the CBF analysis of reference /8/. (It should

be remarked that equation (23) is just a formal re-
sult among CBF quantities and does not imply a cor-
responding physical relationship between magnetic
response and pairing.)

4. Applications to Helium Systems.— We consider

3

ordinary, unpolarized “He (with level degeneracy

v=2), together with fully spin-polarized 3He (v=1).

3

The latter system will be denoted “Het; the former,

simply as 3He. Properties of the Jastrow model of

14
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these systems are computed for two choices of the
correlation function f(r): (a) the Schiff-Verlet
form /28/

foy(r) = exl-5 (%1 (24)
with b=2.888 R independent of density and polar-
jzation and {b) an optimal f(r) determined from
the JF version of the Euler equation, for each v
and each density. The usual Lennard-Jones poten-
tial is assumed, v(r)=4e[(0/r)]2 -(o/r)ﬁ} with
£=10.22 K and ¢ = 2.556 A,

Results for the ground-state energy expecta-
tion value are collected in Table I and plotted
(for the optimal f) in Fig. 1. The reader should
focus his attention on the results for EJF= <H>JF’
since the other forms of the energy (CW, PB) con-
tain large terms involving aspects of the three-
particle distribution function which FHNC theory
may represent poorly /4,6,22/. At p=0.0]42K_3 in
the case of ordinary 3He, the exact expeqtation
value for the Schiff-Verlet (SV) correlation func-
tion specified above is known by Monte Carlo (MC)
calculation /29/ to 1ie roughly midway between the
JF and PB energy functionals computed in FHNC/0 or
FHNC/C approximation /4,22/. However, within these
approximations the PB choice is the "most likely"
among PB, JF and CW to violate the upper-bound
property of the exact <H> upon variation of f
around a sensible reference function. We expect

that in the present applications the JF choice

safely preserves this property, without erring too

much in the upward direction (which is usually the

case for the CW form).

fusion, we stress that the fo

To avoid any possible con-

p

t results in Table 1

and Fig. 1 are obtained by insertion of the JF-

based optimal f into the indicated functionals.

We also note that all numerical energies are of

course given in K per particle.

ENERGY PER PARTICLE (K)
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Fig. 1 : Jastrow ground-state energy versus density
for unpolarized °He and for <Het, based on
the Lennard-Jones potential (o=2.556 A).

(Curves and points not marked with + refer
to unpolarized 3He.)

Table I : Jastrow ground-state energies for unpolarized 3He and for 3He1~.
3 3 3

; s He, fSV Het, fSV He, fopt He#t, fopt
(OZ AT <ty e <Hpg [<Hrgy  <Hgp <tpp) <o <tpe <lopp | <He, <oy <libpg
7.6 -0.43 -0.60 -0.78 |-0.14 -0.23 -0.36] -0.56 -0.63 -0.69 | -0.47 -0.53 -0.61
1.2 -0.46 -0.88 -1.33 [ -0.48 -0.83 ~-1.19{ -0.65 -0.92 -1.24} -0.62 -1.05 -1.56
13.0 -0.23 -0.88 -1.59 | -0.51 -1.05 -1.58} -0.40 -0.91 -1.47 | -0.55 -1.24 =-2.10
14,2 -0.03 -0.81 -1.72 ;-0.47 -1.19 -1.82} -0.12 -0.83 -1.61 | -0.38 -1.30 -2.46
14.8 0.20 -0.76 -1.78 |-0.43 -1.24 -1.94 0.07 -0.75 -1.65}| -0.26 -1.33 -2.66
16.6 0.87 -0.46 -1.90 |-0.22 ~-1.32 -2.25 0.80 -0.41 -1.75 0.25 -1.29 -3.16




One can immediately draw two interesting
qualitative conclusions from this study of the
ground-state energetics. First, the Jastrow model
cannot reproduce the experimentaily determined
energy and density of unpolarized liquid 3He
(Eequi1
temperature and zero external pressure.

o
= -2.52 K, p = 0.0164 A™3) at zero

equil
Important
correlation effects (presumably associated with
spin-density fluctuations and backflow) are
clearly missing from the Jastrow ansatz. Indeed,
the margin of failure seems especially disturbing
until it is realized that the total energy E of
the system results from near cancellation of rela-
tjvely large kinetic and potential contributions.
For these individual terms the percentage error
of the Jastrow model is only of order 10%.

The second point concerns the comparison of

the two polarization states of 3He.

It is seen
that, beyond a relatively low density, the Jastrow
models of 3He'r are energetically more stable than
the corresponding models of the unpolarized system.
This is the case even for the SV correlation
function--the parameter b of which was determined
for ordinary 3He. We have, then, another indica-
tion that the Jastrow trial function is inadequate
for unpolarized 3He.On the other hand, the Jastrow
model appears to be rather good for 3He+, at least
so far as the energy is concerned: a reascnable
interpolation between the JF and PB curves for
this system would put the energy m{nimum somewhere
in the range -1.5 K to -2 K, and the true energy
surely cannot be much lower. (We assume for the
sake of argument that the FHNC/C procedure is no

3 3He,

less accurate for “Het than it is for ordinary
a supposition which has yet to be fully tested. In
this connection one may observe in Fig. 1 that for
SHet, the FHNC/C approximation to the PB functional

clearly violates the upper-bound property at
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densities exceeding p = 0.014 3’3.)

Inspecting Table I, we notice that for ordi-
nary 3He the optimal f does not lead to much im-
provement over the simpie SV choice, EJF being
especially insensitive; even for 3He+ the improve-
ment is not dramatic. In some cases it turns out
that fopt raises the energy slightly, compared to
the SV energy. While this might at first seem con-
tradictory, it must be remembered that since the
Euler equation (13) is derived from an exact energy
functional and thereafter approximated, the solution
obtained does not necessarily minimize an approxi-
mate energy functional (FHNC version of <H>JF’ etc ).

In Fig. 2 the structure factors S{k) of the
optimal Jastrow models of unpolarized and polarized
systems are plotted at the same density (near
Pequil of ordinary 3He). The results for the two
cases are very similar, the only apparent distinc~
tion being that the peak is displaced stightly in-

3He'r compared to the normal system.

ward for
Fig. 3 exposes further shortcomings of the
Jastrow description of unpolarized 3He. The ef-
fective masses of optimal and SV models are far
from the experimental value, which has recently
been set /30/ at (m*/m)exp==2.12 (for p= pequil)'
An even more striking symptom is displayed by the
susceptibility ratio XF/X of the SV model, which
dives into the negative region already at quite
low density. The latter behavior corresponds to
our previous finding that, within the Jastrow
approach, 3He+ is energetically favored over its
unpolarized counterpart, except at small p. (We
should remark that the XF/X curve drawn in Fig. 3
is not consistent through (23} with the values of
m*/m and 5(150) reported here. This curve is de-
rived from Jastrow pairing matrix elements and
effective masses /8/ based on the CW form of the

Hon {for which (23) applies), whereas the other
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quantities in

the JF form.
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Figs. 3 and 4 are calculated using

At any rate, the XF/X results given

are purely illustrative, having no significance for

the real system.)
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Fig. 4 : Dimensionless pairing matrix elements of
unpolarized 3te, corresponding to the Jastrow
models, for various two-body channels.

Fig. 3 : Effectgve mass and magnetic susceptibility
of unpolarized °He, corresponding to the Jastrow
models.



Fig. 4 supplements the CW results of refer-
ence /8/ with plots of the (dimensionless) Jastrow

pairing matrix elements § of normal 3He in ]SO’

3 1
P0 and

approximated CBF quantities of JF form.

02 partial waves, as determined by FHNC/C-
Negative
§ values signal instability of the Jastrow state
with respect to pair condensation in the given
partial wave. Detailed consideration of these
results (along the lines of’reference /8/) leads
once more to the conclusion that the Jastrow cor-
relation operator is deficient in important
respects--particularly in its lack of spin

(and momentum) dependence.

Table II presents some results of an attempt
to correct for the deficiencies of the Jastrow
description by means of CBF perturbation theory.
The required CBF matrix elements are evaluated via
the FHNC/C procedure as sketched in sections 2,3.

(2,2) represent our most complete

The entries for SE
estimate of this quantity, based on formula (22)
for the N{12) matrix elements and the corresponding
formula for W(12) derived by graphical (prime) dif-
ferentiation. In the latter formulathe denominator
D= {[1-X o (m)I01-K (m))I01-X o 0g)I01-X (0,011
As we shall document elsewhere,
3

will also appear.
the correction GE(Z’Z) (for “He systems) is quite
sensitive to the precise means used to treat this
denominator. Accordingly, the results given in
Table I1 should be regarded as illustrative rather
than quantitative. It is seen that the correction
is very large in magnitude and clearly overesti-
mates the effects of the non-Jastrow correlations.
The other entries in the table, labeled 6EL§’2),
are the results for the perturbation correction
without the denominator D, i.e., the factor
{[]'icc]"‘}-% is replaced by unity in the final
formulas for N{12) and w(12). It may be argued

that the omission of D from the present treatment
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simulates the effect of higher-order, RPA-type con-
tributions to the CBF perturbation expansion. The
modified second-order correction 6E£§’2) is much
more reasonable in size, though larger than SE(Z’Z)
as approximated by Woo /13/. Woo used, in effect,
less highly dressed CBF matrix elements than em-
ployed herein; among other simplifications, the

denominators D do not appear.

Table I1 : Second-order CBF perturbation corrections
to Jastrow_ground-state energies for un-
polarized 3He, using Jackson-Feenberg
kinetic energy operator.

e fsy fopt
-3 2-3 (2,2) (2,2) (2,2) (2,2)
(70" A"Y) | sE SEWO SE 6Ew0
7.6 -0.84 -0.34 -0.76 -0.50
11.2 -2.57 -0.83 -2.46 -1.04
13.0 -3.26 ~0.90 -3.27 -1.14
14.2 -5.18 ~1.38 -5.08 -1.63
14.8 -5.74 ~1.47 -5.65 -1.72
16.6 -5.73 -1.22 -5.99 -1.50

We do not report any results for the pertur-
bation correction in the case of 3He+, for the
following reason, associated with the behavior of
icc(0+) shown in Fig. 5. The non-nodal compound-
diagrammatic quantity icc(k) has its maximum value
at k=03 it falls off as k increases through the
Fermi sea, and displays damped oscillations about
zero for k>k.. From Fig. 5 we see that ch(0+)
rises monotonically with density, reaching unity
in 3He+ at a relatively low value of p. Beyond
that critical density, singularities appear in the
expression for the CBF correction GE(Z’Z), because
of the vanishing, at some k, of denominators
[]’icc(k)]% in the W and N matrix elements and of
the denominator 1-§cc(k) in the single-particle
energies e(k). Consequently, for densities at

which icc(0+) >1, the CBF perturbation procedure,

in its present computational realization, ceases
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to be meaningful. Formally, it may be shown that
the singularities generated by the denominator of
(22) are in fact cancelled by those occuring in
the e(k), provided icc(k) remains less than unity
for k> kF' (We are reminded of similar compensa-
tions of possible [1-icc]'1 singularities within
the FHNC treatment of the Jastrow spatial and
momentum distributions.) However, our computa-
tional procedure, which is based on an effective-
mass approximation, has yet to be reformulated
to take advantage of this cancellation. The
[1-icc]“ singularity in e(k) (and hence in
Wnn-Hoo) may be merely an artifact of our theory,
without physical relevance. On the other hand
it may actually reflect some interesting physical
phenomenon; e.g., icc(0+)= 1 may signal some im-
minent phase transition. Further analysis (for
example, using the penetrating methods of CBF
coupled-cluster theory /14/) is needed to decide
between these two possibilities.

The effect of a []-icc]-] singularity on the
Jastrow values of m*/m, the pairing matrix elements
§ and the susceptibility ratio XF/X will be slight

unless the singularity appears near kF. Even so,

8 10 12
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we choose not to quote any m*/m results for 3He¢
until the origin of the singularity in the single-
particle energy is better understood.

That the values of XCC(O+) in unpolarized

3 3

Het+ may be attributed
1

He are about half those in
to the presence of a {rough) overall factor of v~

It is interesting to note that
3

in this quantity.
icc(0+) for ordinary “He eventually crosses unity,
at a value of p somewhere beyond the crystalliza-
tion density. Lantto /31/ has observed the
vanishing of ]-icc(0+) in the electron gas at very
Jlow density--corresponding to the strong-coupling
regime of the Coulomb system.

5. Applications to Deuterium Systems.— We define
Dt as a system of deuterium atoms somehow con-
strained so that any pair of atoms interacts ex-

323 state /32/. Since the

clusively in the b
Tatter interaction is strongly repulsive at short
distances and only very weakly attractive at

longer range, we have a system of fermions which
is expected to display extreme quantal behavior--

34e /33/.

even more so than
Two species of D+ are examined here, namely:

(i) D4y, with one allowed nuclear-spin state, and

T T T T U T T

—

SHe, Het
FHNC/C; fopt

o

0.8

Xee

0.6 |-
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1

I

Fig. 5 : Compound-diagrammatic quantity

X.c(0%) for unpolarized 3He

and for 3He+, as a function
of density.
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(ii) D+2, with two allowed nuclear-spin states
which are assumed to be equally populated /34/.
We note that D4,, with one Fermi sea, has v=1 and
corresponds to 3He+,whi]e D+2, with two equal Fermi
seas and v=2, corresponds formally to ordinary 3He.
With such correspondences in mind, calculations of
the type described in section 4 have been repeated
for deuterium. It is found that the results pre-
serve the stated analogies, to the extent that many
of the qualitative features encountered in section
4 (as well as the associated judgments) carry over
with 3He+ replaced by D+] and unpolarized 3He re-
placed by Dt,. In particular, the Jastrow model
shows an energetic preference for D*l over sz
(except at low density); the Jastrow trial function
may again be considerably better for v=1 than for
v=2,

The calculations are based on the theoretical

3

b Z: potential of Kolos and Wolniewicz /35/, as

used by Miller and Nosanow /34/. We report results
only for a Schiff-Verlet correlation function (24).
(Optimal correlation functions for the deuterium
systems will be generated in later work.) The re-
sults for energy expectation values, structure
functions, effective masses, second-order perturba-
tion corrections and XCC(O+) values are presented
in Tables III and IV and Figs. 6-9. Note that in
Table III
Jastrow ground-state energies for two species of

spin-aligned deuterium. {LO refers to lowest
cluster order approximation.)

o] sz D¢1

-3 2-3

(10~ A7) <H>L0 <H>JF <H>LO <H>JF
1.41 0.277 0.276 0.567 0.450
2.82 0.098 0.255 0.499 0.333
3.52 -0.018 0.323 0.455 0.292
4,23 -0.136 0.476 0.432 0.299
4.93 -0.256 0.741 0.412 0.374
5.63 -0.377 1.119 0.417 0.534
6.34 -0.489 1.630 0.418 0.749
7.04 -0.611 2.283 0.482 1.041
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o
these figures, o=3.69 A, corresponding to a Lennard-

Jones fit to the Kolos-Wolniewicz potential /34/.

Table 1V

Second-gorder CBF perturbation corrections to Jastrow
ground-state energies for Dt,, using Clark-Westhaus
kinetic energy operator /7/.° (Six partial waves
are included.)

BT S
(107 A7)
1.41 -0.13 -0.08
2.82 -0.51 -0.22
3.52 -0.85 -0.31
4.23 -1.34 -0.41
4.93 -2.00 -0.52
5.63 -2.86 -0.64
6.34 -4.00 -0.76
7.04 -5.48 -0.89

It is of special interest to compare the
Jastrow energies obtained in FHNC/C approximation
with the earlier results of Miller and Nosanow (MN).
In the MN work, a hypernetted-chain (HNC) or BBGKY-
KSA procedure /36/ was applied to evaluate the
radial distribution function corresponding to the
Jastrow factor Hf(rij), and the Wu-Feenberg (WF)
antisymmetry expansion /37/, carried to three-index
terms, was used to correct for the presence of the
Slater determinant ¢0 in the (Fermi) Jastrow ansatz
(1)-(2).

functional.

This treatment is based on the JF energy
The correlation function f was taken
of SV form, with b determined for each v and p by
minimizing the Fermi-system energy in HNC-WF or
BBGKY-KSA-WF approximation. We have adopted the
b values corresponding to the BBGKY-KSA approxima-
For the D+

tion, which were supplied by Miller.

1
system our JF energies agree very well with the
HNC-WF results reported by Miller and Nosanow (see
Fig. 6). On the other hand, in the case of D+2
the JF and MN curves depart markedly from one
another as the density increases past 0.003 a3

(see Fig. 7}. The disagreement of our D4, results
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with those of MN is even worse for their BBGKY-KSA
calculation. (A calculational situation analogous
to that for DTZ prevails with respect to unpolar-

3

ized “He: juxtapose the findings of reference

/38/ against those of references /4,22/.) It must
be kept in mind throughout such considerations
that the net energies E of the systems under study
are very small in magnitude compared to the
separate kinetic and potential energies, so that
relatively small errors in the evaluation of these

separate parts is prominently reflected on the

scale of Figs. 6 and 7.
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Fig. 6 : Jastrow ground-state energy versus
density for D+ with one allowed nuclear-
spin state, based on the Kolos-Wolniewicz
potential,(corresponding Lennard-Jones
o = 3.69 A).

For both deuterium systems we carried out a search

in the vicinity of the b values provided by Miller.

It was found that these parameters are still very
close to optimal for the JF energy functional as
approximated here; the best parameters produce
changes in the JF curves which would hardly be

noticeable on the scale of Figs. 6 and 7. This
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is somewhat surprising for the D+2 case, where the
differences between our results and those of MN

can exceed 1 K in the density range considered.
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Fig. 7 : Jastrow ground-state energy versus
density for D+ with two allowed nuclear-
spin states, equally populated. (Calcula-
tions based on the KOAOSaWOlniewicz
potential; o = 3.69 A.)

The present calculation still does not settle
the question of whether D+] (respectively sz) is
a liguid or a gas in its ground state under zero
pressure. (In the former case one has a Fermi
liquid 1ike ordinary 3He; in the latter, one can
go from gas to liquid at T=0 under appropriate
pressure.) However, we may call attention to the
very small net energies and substantial negative
potential energies (e.g., <V>~-5K at pzo.oo4K‘3)
characterizing our Jastrow results. These features
suggest that improvement of the correlation operator
and/or a reliable CBF perturbation calculation may
well depress the minimum theoretical ground-state
energies of the deuterium systems to negative

values, implying the existence of two new Fermi

liquids.
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