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COOPER PAIRING IN SPIN-POLARIZED FERMI SYSTEMS

A.J. Leggett

School of Mathematical and Physical Sciences, University of Sussex,

Brighton, Sussex, BN1 9QH, Grande Bretagne

Résumé.- On discute la formation de paires de Cooper dans les systémes de Fermi 3
spin polarisé&, tels que 3Het et Dt, en insistant particulidrement sur les questions

suivantes :

(1) Quelles sontles conditions de formation des paires de Cooper, et d quelles tem-
pératures cette formation est-elle probable pour les systémes envisagés ?

(2) Quelle est la relation entre les paires de Cooper et des molécules diatomigues ?
(3) Quels sont les phénoménes qualitativement nouveaux que l'on attend dans un
syst@me 3 paires de Cooper, et qu'apparaitra-t-il probablement de nouveau si la
formation de paires a lieu dans un systéme & spin polarisé ?

Abstract.- I discuss the phenomenon of Cooper pairing in strongly spin-polarized
Fermi systems, such as 3Het and D+, with particular attention to the questions
(1) what are the conditions for Cooper pairing to occur, and at what temperatures

is this likely to happen for the systems of practical interest ?

(2) what is the

relationship between Cooper pairs and diatomic molecules ? (3) what are the quali-
tatively new phenomena we expect in a Cooper-paired system, and what new physics
is likely to emerge if the phenomena occurs in spin-polarized systems ?

In this talk I shall discuss, informally and
without detailed derivation, the questions: What
is Cooper pairing and under what conditions do we
expect it to occur in spin-polarized (and some oth-
er) quantum systems? What are the similarities and
differences between Cooper pairs and diatomic mole—
cules? What are the consequences of Cooper pair-
ing and what can we use it for? It should be
emphasized at the start that the experimental rele-
vance of the phenomenon to spin-polarized systems,
particularly the hydrogen isotopes, is extremely
sensitive to the maximum density at which they can
be stabilized, which at the time of writing is an
unknown qguantity.

Cooper pairing is, in the crudest temms, a
phenomenon which occurs in degenerate Fermi systems
and which involves the formation by two fermions of
a sort of giant diatomic molecules ("Cooper pairs')
which automatically undergo Bose condensation. It

generally leads to the complex of phenomena which

go under the generic name of superfluidity, and the

resulting system is called a '"Fermi superfluid".
The conditions for its occurrence are: a fairly high
degree of degeneracy, a (weakly) attractive inter-
action between the fermions, and the absence of too
rmch incoherent scattering. It is not necessary
that the paired fermions be identical, or even that
they have the same mass, but they must have at
least approximately the same vermi momentum. An
important consequence of this is that pairing of
fermions with opposite spin is suppressed by even a
fairly weak spin polarization, since this will inc-
rease the up-spin Fermi surface at the expense of
the down-spin one.

Taking for the moment a naive view of the
Cooper pairs as simply giant diatomic molecules,
one would expect them to be described by some "mole-

cular'wave function of the type
$(ry-r,, 99,9,)
vwhere o indicates the spin of a fermion and T

the relative separation of the two fermions. (Here

and in the subsequent discussion we assume for sim-
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plicity that the centre of mass of the pairs is at
rest). In accordance with the Fermi statistics,
the wave function should be antisymmetric under

exchange of particles 1 and 2. Moreover, for al-
most all the systems which are of interest in the
present context the total spin of a pair is likely
to be conserved to a very good approximation. Thus,

in the case of two fermions of spin 3, one has the

possibilities:
a) S =0, ¢ = even
b) S=1, 2 =odd

where £ is the relative orbital angular momentum.

It turns out that for £ = 0 (s-wave pairing) the
properties of the Cooper pairs, and hence of the
whole system, are isotropic, whereas for 2 # 0 (with
one exception which is not relevant in the present
context) the properties are anisotropic and one
speaks of an "anisotropic superfluid'.

One finds that in dilute unpolarized systems
the energetics will always favour & = 0 pairing
(just as the groundstate of a diatomic molecule in
a Z—state always has angular momentum zero). On
the other hand, for a spin-polarized system, even a
dilute one, 2 = O pairing (which is associated, as
above, with total spin zero) is suppressed and gen-
erally speaking tie pairs will form in an £ = 1
state, thereby giving rise to anisotropic superflui-
dity.

In Table 1, I review same actual and possible
(laboratory) Fermi superfluids. The last colum
indicates the critical temperature at which one
might expect the onset of Cooper pairing. Under
the heading of "actual" superfluids one might per-
haps also include the Bose-condensed excitations
reported by A.Mysyrowicz at this Conference, since
after all an exciton is nothing but a bound state

of two fermions (electron plus hole). /1/.
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Two aspects of the numbers in Table 1 deserve
comment . First, it should be emphasized that the

calculation of the critical temperature of a Fermi

Table 1

Actual and possible Fermi superfluids

System s* 2 T ( °K)
(a) Actual
electrons in 0 0 < 20
superconductors
SHe-A, B, A 1 1 ~2x107°
{b) Possible
‘He in “He 0 0o ~10%10°>
’He+ in “He 0 0 ?
3Het 1 13?) 107°-1072 2
-6
Dyy 2 1 < 10
D 43 1 0

* In all cases except the first, S is the nuc-
lear spin. In the case of deuterium there is also
an electronic spin contribution, which in the ''spin-

polarized" state is by definition always 1.

superfluid is in general an extremely tricky busi-
ness, since it depends exponentially on parameters
such as the effective interaction at the Fermi sur-
face which themselves are often not well known.
Hence one should treat the numbers quoted for °He+,
and to a lesser extent for °He in “He (at the maxi-
mum concentration, ~ 10%) with considerable caution.
However, an exception to the general rule is the
case of a very dilute gas where the two-particle s-
wave scattering length ag is known; in this case
the critical temperature for s-wave pairing should
be given to a very good approximation, by the form-
ula

T, =1.6 T exp - A2 kplall)  (ag< 0) (1)

where TF is the Fermi temperature and kF the Fermi

momentum.



For a dilute system with p-wave pairing, the
factor kFlasl in the exponent is replaced by a fac-
tor of order klf;lbl, where b is a quantity with the
dimensions of volume which is the p-wave analogue
of the scattering length. Because of the much
sharper dependence of the exponent on density in the
p-wave case, p-wave pairing is likely to occur in
dilute systems, if at all, only at presently unat-
tainable temperatures.

The second conment concerns spin-polarized
deuterium. This is clearly a special case in the
context of the above discussion, in that the deute-
rium atom, though a fermion, has nuclear spin 1.
This invalidates the considerations given above for
fermions of spin 3. Assuming that the electronic
spins are completely polarized, we can consider two
main cases: (a) Dﬂ, in which only the lowest nuc-
lear Zeeman state is appreciably populated. In
this case the (nuclear) spin of the Cooper pair is
2 (the total spin is 3!) and, bearing in mind the
Fermi statistics, we see that the orbital angular
momentum must be odd. For a dilute system the

energetically favoured pairing state is a p-state,

but it is likely that this will cccur only at unat-

tainably low temperatures for the reason given above.

(b) D+3’ in which all three nuclear Zeeman states
are (nearly) equally populated. Depending on the
density and field this may be the equilibrium state
or possibly a long-lived metastable state. In this
case the favoured pairing is with £ = 0 but nuclear
spin 1 - a unique case. Since the system is like-
ly to be very dilute, we can use the formula (1)

and substitute the experimental value of the °J

seattering length for deuterium, - 3.7 A. This
gives approximately
T, ~ 100n % exp - 1/(6n ) (2)

where the number density n is measured in 43, (It

is necessary, here, to remember that the relation
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between kF and n is modified from the familiar one

because of the triple spin degeneracy). Thus, for

19 -3

example, for n = 107" cm v, the critical tempera-

ture is unobservably low (< 10_8°K) but for n =

1021 cm—-3

it would be already of the order of 1%.
Let me now turn to the second topic of this
talk: in what ways are Cooper pairs like and un-
like diatomic molecules which have suffered Bose
condensation? There are a number of obvious quali-
tative differences: in all known Fermi superfluids,
the pair "radius" is very much larger than the mean
spacing between particles, whereas the naive concept
of a diatomic molecule would seem to imply the
opposite assumption; the standard BCS theory /2/ of
Cooper pairing invokes heavily the degeneracy of
the Fermi sea, whereas for diatomic molecules this
plays no role; and, in the anisotropic case, the
excitation spectrum of the paired system is gene-
rally anisotropic /3/, whereas for a diatomic mole—
cule it is isotropic whatever the angular momentum
state. Nevertheless I believe that there may be
some sense in which it is legitimate to view dia~
tomic molecules and Cooper pairs as the two ends of
a continuous spectrum of possible behaviour of a
Fermi system with attractive interactions. To
investigate this point, let us consider the follow-
ing model system (for a more detailed account of
this model and the calculations based on it, see
ref. /4/.) We imagine a system of N fermions of
spin 3 contained in unit volume, and with (for the
moment) no spin polarization and no external mag-
netic field. The potential between the fermions
has a core which is fairly strongly repulsive, plus
a weakly attractive tail which effectively cuts off
at some characteristic radius r, (which might in
practice be a few X); the overall potential is
repulsive (i.e. [V(r)dr > 0). However, the details

of the potential aresuch that it is either just

enough, or not quite enough, to bind two particles
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in free space into a diatomic molecule. In either
case the s-wave scattering length 2y is very much
larger than the characteristic range ro of the
potential. (a.S > 0 for a bound state, < 0 if the
state is not quite bound). If the two-particle
state is bound, its energy is given approximately
by E = - ﬁz/mai. We now assume that N is such that
the mean spacing between particles, say £, is large
compared to r,; however, we make no assumptions
about the ratio Sl/as and moreover imagine that by
varying the details of the potential we can vary
this quantity continuously from positive to negative
values. The virtue of this model is that, when
suitably scaled, most of the properties of the sys-
tem should be insensitive to the details of the
potential and functions only of the single dimen-
sionless variable J&/as.

We can now write down an ansatz /1/ for the
wave function of the N-body system which reduces to
the description of a set of noninteracting, Bose-
condensed diatomic molecules in the limit IL/aS > 4o
and to that of a Cooper-paired system in the oppo-
site limit !L/as + - o, It is the following:

& (7107, Tp0g- .- TyOy) =

Atg(rlolrzoz) " (r3c73r404) ..... (3)

% (g1 O TN
whore A is an antisymmetrization operator. Whether
or not the wave function (3) is a reasonable appro-
ximation to the true ground-state wave function of
the system, it is of some interest to study how the
transition between the two limits takes place.
Using our knowledge of the correct form in these

limits, we assume that the "molecular" wave function

is of the form
G (5Ep0109) = (e = DBy ~ 1) (@

in an obvious notation, i.e. it corresponds to a
spin singlet, 2 = 0 state, with the centre of mass

at rest.
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To do any useful calculations with the wave
function (3) it is necessary to use the standard
BCS trick of relaxing particle number conservation
and minimizing, instead of H, the quantity H — uN
where y is the chemical potential. (For the subse-
quent steps, see e.g. ref. /5/). If we then intro-
duce the Fourier transform, s of the function

and define the complex quantities W, Y such that
2 2
{ukl + lvkl =1, Cx = /Y (5)

then it turns out that the function (3) is just the

N-particle projection of the particle-nonconserving

BCS-type function

oo =119
BCS kk

3y =y |0,00 + v [1,1> (6)

(uy + v oy 27, vacuum>

where the function 'f’k is a state vector in the "occ~
upation" space associated with the pair of plane-
wave states (kt ,-k¥). This space is four-dimen-
sional and is spanned by the basis vectors |0,0>,
[1,1>, |0,1> and |1,0>, where for example |1,0>
labels the state in which the plane-wave state (k+)
is occupied and the state (-kv) is empty. The
linear combination &k (eqn.(6)) is the groundstate
within this space; the excited states are the two
"broken-pair'' states |[1,0> and |0,1> and the "exci-
ted-pair" state vl’:l0,0> - ul’: [1,1>.

A many-body wave function of the form (3)
(with @ given by the singlet, s-wave form (4)) is
completely parametrized by the set of quantities

F = ult Vi N
It is the Fourier transform of this quantity, F(r),

(rather than (r)) which plays the role of a wave

function for the relative motion of the Cooper pairs.

Indeed the expectation value of any two-particle

operator of the general form A = } J ACx; - zj)
ij

(e.g. the potential energy) is given, apart from

Hartree-Fock-type terms which are of no great inte-



rest in the present context, by the expression
<> = Ja(r) F(o)|? dr (8)

which may be compared with the corresponding expres-—
sion for an isolated diatomic molecule (F(r) >y(r)).
When F(r) bas its equilibrium value, the ener—
gies of the excited states of the pair (5&;}9) are
given by Ek (broken pair) and ZEk (excited pair)
where Ek and the associated quantity Ak are impli-
citly defined by the equations
F, = Oy /28y (8a)

B, = ((gew) + |85 (8b)

(e, = 5767 /2m)
All the above statements are quite generally true
once we assume the ansatz (3) for the many-body wave
function, irrespective of whether or not we are in
the usual "Cooper-pair' limit. However, it should
be strongly emphasized that once we are outside
this limit we can no longer assume that the chemi-
cal potential u is simply the free Fermi energy €ps
it must, in fact, be determined self-consistently
from the equation j n, = N, using the fact that the
number of partic]els{ n, in the plane-wave state k
(with either spin) is given (in the groundstate (6))

by

n = 2]vk]2 =1-—5 9

Now for the equation detemmining F(r):we first
note for orientation that the familiar Schrodinger
equation for a diatomic molecule can be written
after Fourier transformation in the fom

(2g, - E)) v+ E V(k-k') ¥, =0 (10)

It turns out that the quantity Fk obeys the equa-
tion (the familiar BCS gap equation lightly disgui-
sed)

2EF + 1E'V(k ~-k')F, =0 (112)

B = e - 0+ (a7 (11b)
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This is a nonlinear equation because, by (8) and

(11a), Ak depends on Fk itself by the relation

b= -] V(k - KDF, (12)
kl

Now, it is fairly obvious by inspection 6f
egns.(11) and (9) and the use of some simple renor-
malization tricks /4/ that both the chemical poten-—
tial p and the quantity Ak are at most of order of
magnitude of the free Fermi energy ‘flzkﬁ/Zm or the
quantity 7 /2ma2. If we now consider values of k
of the order of rgl, then by our initial hypothesis
(kp 1, ~

very much larger than either of these two energies

T/t << 1, ro/as << 1) we find that By 1s

and is hence large compared to u and |4, |, and also
to EO . 02 /Zmaz. Under these conditions the BCS
gap equation (1lla) simply reduces to the Schr'édinger
equation (10), so we find the important result that

the short-range behaviour of the pair wave function

F(r) is exactly the same as that of the wave func-

tion of an isolated diatomic molecule. This result

is probably qualitatively valid for cases more gen-
eral than the simple model considered here (cf.ref.
133

let us now consider the solution of equations
Quite

generally it turns out that for k << r, the quantity

(11a) and (9) in the two limiting cases.
Ak tends to a constant, A. In the case JL/aS > +
(two-particle state bound, very dilute system) we
find that A » 0, u > - 5°/2m’ (half the binding
energy of the molecule) and the BCS equation reduces
to the Schrddinger equation for all k. Thus in this
limit our wave function simply describes a Bose
condensation of noninteracting diatomic molecules,
as indeed we should expect a priori. In this limit
the pair radius (which is just as) is by hypothesis
much less than the interparticle spacing.

In the opposite limit, s&/aS + ..o (dilute system

with very weak attraction) we obtain the standard
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BCS results: 1 tends to the free Fermi energy £p =
ﬁzk%./Zm, while A becomes exponentially small:

A = const. e exp - TR kglag|) (13)

We find that in this limit the pair "radius" is of
order wa/A (vF = Fermi velocity) and hence is very
much greater than the interparticle spacing.

We can, of course, solve egns.(1lla) and (9) for
quite general values of JL/aS and so study the trans-
ition between the two limits. Is there any point
at which a qualitative change occurs? One might at
first sight expect that such a point might occur at
IL/a.s = 0, which is the point at which the two-parti-
cle state in free space becomes bound; but in fact
nothing special happens at this point. Indeed, the
formal solutions to egns.(1lla) and (9) are quite
continuous throughout the whole range. However,
there is in fact a point at which at least the phy-
sical significance of some of the results changes,
namely the point at which the chemical potential u
passes through zero. To see this we go back to
eqn. (8b) and note that Ek is the (minimum) energy
of excitation of the pair state (kt, - k+). It
follows that the minimum excitation energy of the
system as a whole ("energy gap'') is the minimum
value of Ek as k varies. Now, for u > 0 this min-
imum value (which always occurs in the region
k << r;]‘, where 4, = 4) is just |a] itself - hence
the conventional name "energy gap' for the quantity
A, in BCS theory. On the other hand, for p < 0
the energy gap is pot |A| but rather the quantity
(Jul? + |A|2)%. We would therefore expect some of
the high-order thermodynamic derivations to have
singularities at the point u = 0, and it is no doubt
quite possible that the ansatz (3) breaks down com-
pletely in the neighbourhood of this point.

It should be added that the whole situation
becomes a great deal more complicated at finite

temperatures. In the BCS limit the temperature at
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which pairs are formed is identical to the tempera-
ture at which they undergo Bose condensation. In
the opposite limit of diatomic molecules, however,
it is obvious that the molecules dissociate only
around a temperature very much higher than that at
which they Bose-condense. (Dissociation does not
correspond to a phase transition in the usual sense).
It is possible to generalize the model to the
case of p-wave pairing;

for exanple, if we consi-

der N fermions all with spin +} in unit volume, then

it is clear that the orbital wave function of the
pair must be odd, so that the energetically favoured
pairing state is a p-state, and by a suitable choice
of potential it is possible to arrange that the
system be close to the onset of the two-particle
bound state. The problems of renormalization of
the potential, etc., are rather more complicated
than in the s-wave case, but the general pattern of
the results is similar; in particular egns.(11)
and (9) still apply. The "'gap" Ak is now no lon-
ger constant in the region k ro << 1, but is of the
general form A o 15.9, where c is a real or complex
unit vector. It immediately follows that the exci-
tation energy Ek is anisotropic and for u > O has
nodes at the points where k.c = 0. For u < 0, on
the other hand, the energy gap is finite for all
directions; for small departures from the diatomic~
molecule limit the main effect of the many-body
interactions is to give the excitations on aniso-
tropic effective mass. The quantity F(r) is always
anisotropic (with approximately p-wave symmetry) and
reduces in the diatomic-molecule limit to the Schrd-
dinger wave function of a molecule in a p-state, as
we expect.

Finally, let me disucss briefly some of the
more striking manifestations and consequences of
Cooper pairing in a Fermi system. First there are

phenomena, associated with the centre-of-mass motion



of the pairs; most of these occur for any spin and

angular momentum of the pairs. The most spectacu-
lar phenomenon is that of superfluidity (persistent
currents, frictionless flow through "superleaks',
and the associated phenomenon of anomalous rotation-—
al inertia); in addition such systems are expected
to show anomalously low entropy, convective heat
transfer and the phenomenon of second sound. In
addition, if the spin of the pairs is nonzero, one
would expect metastable ''spin supercurrents" and if
the orbital angular momentum is nonzero, 'orbital
supercurrents" associated with situations in which
the orientation of the anisotropic wave function
varies in space, and possibly a finite orbital angu-
lar momentum in equilibrium. /6/.

A second class of striking effects occurs only
in Cooper-paired systems where the pairs have S # 0
and/or £ # 0, and is associated with the internal
structure of the pair wave function. Because the
pair function picks out a particular orientation or
set of orientations, one gets a variety of phenom-
ena similar to those observed in liquid crystals,
e.g. the occurrence of various types of topological
singularities. In addition, even when the orienta-
tion is spatially uniform, many of the properties
of the system will be anisotropic. Another proper-
ty peculiar to the anisotropic case is the existence
of various types of collective excitation corres-—
ponding to deformation of the internal structure of
the pair wave function; some of these excitations
may play a very important role in nuclear magnetic
resonance or in the absorption of ultrasound.

But perhaps the most fascinating prospect open-
ed up by the existence of new types of system with
Cooper pairs formed in an anisotropic state is the
possibility of amplification of ultra-weak effects,
which is a direct consequence of the fact that
Cooper pairs are by their very nature automatically

Bose-condensed. let me finish by illustrating this
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phenomenon briefly with three examples from our only
existing anisotropic superfluid, liquid *He below
3 K. (Of these three examples, the first is well
established experimentally, the second may have been
observed and the third is as yet speculative).

(1) The nuclear dipole-dipole interaction.
For a gas of ordinary diatomic molecules in a rela-
tive p-state this would tend to orient the nuclear
spins perpendicular to the direction of orbital
angular momentum (two magnets have lower energy
when they lie in the plane of relative motion).
However, the associated energy advantage is at most
of order 10_7°K, which is tiny compared to the
thermal energy at T ~ 1 mK. Hence in an ordinary
gas the nuclear dipole energy is a very small pertu-
rbation indeed. However, in superfluid ’He we are
dealing not with ordinary diatomic molecules but
with Cooper pairs, and the latter, being Bose-cond-
ensed, must all have the same relative motion as
well as the same centre-of-mass motion. Hence the
energy advantage gained by the '"right" configuration
10779 x N, the total number

is not ~ 10779K, but ~

of pairs in the system. This is very large com-
pared to KT, so the pairs do indeed orient their
spins perpendicular to their orbital angular momen-
tum.

(2) Electronic ferromagnetism. It a homo-
polar diatomic molecule rotates, it generates a
small magnetic moment which is proportional to the
extent to which the average position of the electrons
on one of the atoms fails to coincide with that of
the nucleus. (An intrinsically chemical eifect).
For a rare-gas dimer, this magnetic moment is extre~
mely small, and in fact the energy of orientation in
any attainable magnetic field is tiny compared to
the thermal energy KT. Consequently an ordinary
gas of rotating mplecules would have the individual
molecules oriented at random in even the strongest

fields. In °He-A, however, the rotating "molecules"
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are Cooper pairs and therefore Bose-condensed, so
they all have the same axis (and sense) of rotation,
and the liquid therefore acquires a magnetic moment
proportional to the total number of pairs, that is
it behaves like a ferromagnet.

(3) Parity violation. If one is looking
for the effects of the parity violation characteris-
tic of the weak interaction, an obvious line is to
search for an electric dipole moment,on an elementary
particle, atom or molecule in a stationary state.

By the Wigner-Eckart theorem such a dipole moment
would have to lie along the total angular momentum
vector J : d = ¢J, and such a relationship between
the polar vector d and the axial vector J would cer-
tainly require violation of parity conservation (P).
Unfortunately it would also violate time-reversal
invariance,I) and it is generally believed that the
strength of that part of the weak interaction which
violates P and T is only ~ 107> of that which vio-
lates P alone. However, suppose that an atomic or
molecular system were characterized by two inde-
pendent angular mosentum vectors L and § (say, an
orbital and spin angular momentum). Then we can
form the hypothesis ‘} = cl:. b4 §, and this violates
P but not T. Now, calculation shows that any such
dipole moment would have to be very weak indeed, so
that even in the strongest possible electric fields
its orientation energy could not compete with KT.

So a gas of independent atoms or molecules having
this characteristic would be completely disoriented
(the vectors L, S and L x S would point in random
directions) and no effect would be observable.

Once again, however, Bose condensation makes an
essential differenée in He-B; the Cooper pairs turn
out to have a finite expectation value of the vector
L x 8, and because of the Bose condensation the
direction of this vector must be the same for all

pairs. Consequently one predicts a total electric

JOURNAIL: DE PHYSIQUE

dipole moment due to parity-violating effects which,
although certainly very small, is macroscopic in
the sense of being proportional to the total mass
of liquid.

If the spin-polarized systems ’Het and Dt do
indeed become superfluid at attainable temperatures,
one would expect a number of similar amplification
effects. In particular, these effects which depend
strongly on the '"chemistry'" of the Cooper pairs
should in principle be much stronger in D+ than in
the much more cherically inert ‘He. However, agai-
nst this nust be set the likely reduced density of
the former system, as well as the fact that the
mere existence of a strong electronic polarization
may tend to mark more subtle orientational effects.
Clearly, a great deal depends, here as elsewhere,
on the maximum density at which spin-polarized sys-
tems can be stabilized.

This work has benefited from discussions with

M.G.McClure, A.A.Abrikosov, P.Noziéres and with

many of the participants at the S.P.0.Q.S. confer-

ence.
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