N

N

THE THEORY OF SIMPLE CLASSICAL FLUIDS:
UNIVERSALITY IN THE SHORT RANGE
STRUCTURE
Yaakov Rosenfeld

» To cite this version:

Yaakov Rosenfeld. THE THEORY OF SIMPLE CLASSICAL FLUIDS: UNIVERSALITY IN THE
SHORT RANGE STRUCTURE. Journal de Physique Colloques, 1980, 41 (C2), pp.C2-77-C2-81.
10.1051 /jphyscol:1980212 . jpa-00219804

HAL Id: jpa-00219804
https://hal.science/jpa-00219804
Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/jpa-00219804
https://hal.archives-ouvertes.fr

JOURNAL DE PHYSIQUE

THE THEORY OF SIMPLE CLASSICAL FLUIDS :

Yaakov Rosenfeld,

Colloque C2, supplément au n° 3, Tome 41, mars 1980, page

C2-77

UNIVERSALITY IN THE SHORT RANGE STRUCTURE

Nuclear Research Center-Negev, P.O. Box 9001, Beer-Sheva, Israel

Ré&sumé.- Une theorie des fluides classiques simples est pré&sentée dans laquelle 3
la fois la structure statique (au niveau des "paires"), et la thermodynamique de
tous les systé@mes pouvant 8tre décrits par des potentiels de paires & symétrie

sphérique

peut étre calculée par une approche unifiée. La théorie est fondée sur

1'expansion diagrammatique de la fonction de distribution de paires conduisant a
une &quation intégrale HNC mogdifiée. Elle consiste en l'approximation que les

"bridge functions"

(c'est-d~dire la somme de tous les graphes élémentaires, annulés

dans 1l'approximation HNC) constituent la mé&me (universelle) famille de courbes,

quel que soit le potentiel de paires adopté. En utilisant les simulations numériques
paramétrisées du modéle des sphé&res dures comme donnée initiale dans 1l'équation in-
tégrale il devient possible de reproduire un large éventail de données numériques

=

calculées pour des potentiels d'interaction de particule 3 particule trés diffé-
rents ( les plasmas 3 une et deux composantes en particulier}. L'hypothése d'uni-
versalité permet d'obtenir le potentiel de force moyenne § courte distance directe-

ment & partir de solutions de 1l'équation intégrale ;

les factures d'améliorations

des réactions nucléaires (dans le plasma dense) gui en remettent sont en bon accord
avec les résultats récents de Jancovici (par une méthode indirecte) pour des char-
ges identiques, et avec le modéle de la sphére ionique de Salpeter pour les mélan-

ges.

Abstract.- A theory of simple classical fluids is presented in which both the
static structure (on the "pair" level), and the thermodynamics, of all systems
describable by spherically symmetric pair potentials, can be calculated by a
unified approach. The theory is based on the diagramatic expansion of the pair
distribution function that leads to a modified hypernetted chain (HNC) integral
equation. It consists of the approximation that the bridge functions (i.e. the
sum of all elementary graphs, assumed zero in the HNC approximation) constitute
the same (universal) family of curves, irrespective of the assumed pair potential.
Using the parametrized computer simulation data for hard spheres as input in the
integral equation, it was found possible to virtually duplicate a large body of
computer simulation data compiled for a variety of quite disparate interparticle
potentials (the one and two component plasma in particular). The statement of
universality enables to obtain the potential of mean force at small separations
directly from the solutions of the integral equation, and the resulting enhance-
ment factors for nuclear reaction rates (in the dense plasma) are in excellent
agreement with Jancovici's recent calculations (by an indirect method) for equal
charges, and Salpeter's ion-sphere prediction for mixtures.

A theory for classical fluids is presented
in which both the static structure (on the
"pair" level), and the thermodynamics, of
all system describable by spherically symme-
tric pair potentials, can be calculated by a
unified approach. The theory is based on the
diagramatic expansion of the pair distribu-
tion functions that leads to modified hyper-
netted-chain (HNC) integral equations. It
consists of the approximation that the brid-
ge functions (i.e. the sum of all elementary
graphs, assumed zero in the HNC approximat-
ion) constitute the same (universal) family
of curves, irrespective of the assumed pair
potentials. Using the parametrized computer
simulation data for hard spheres as input in
the integral equations, it was ﬁgund possi-
ble to virtually duplicate a large body of

computer simulation hata, compiled for a
variety of quite disparate interparticle
potentials (the one and twc-component
plasma in particular). The statement of
universality enables to obtain the poten-
tial of mean force, at small separations,
directly from the solutions of the integral
equations. The resulting enhancement fac~
tors for nuclear reaction rates (in the
dense plasma) are in excellent agreement
with Jancovici's recent calculations (by
an indirect method) for equal chafges, and
Salpeter's ion-sphere predictioﬁ; for mix-
tures. Consider a mixture containing No
particles of type a, interacting via the
FNe , V. = total
volume, ¢ = N , ¥4 = No , X =
v v

potentials UaB(v). Let N =
Na.
N
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Consider a specific g component case with a
given set X3, X3,..., Xg. The graphical ana-
lysis of the pair distribution functions /1/
gas(v) yvields the following exact equations
ap V)
= gas(v)-l, and the direct correlation func-

for the total correlation functions, h

tions Cas(“) :

h g+ 1 = exp [} Uzgf(v)/kBT + huB(v)_
COLB(\)) ]l (1)
hae(k) - Caﬁ(k) = % hay(k)’ Cae(k) (2)
where

eff -
Usg (V) /kgT = Uas(”)/kBT + BaB(v) (3)

Eg. (2) is the Orensteﬁn—Zernike relation for
mixtures, written in fterms of Fourier trans-

forms. Bas(v) denotes' the functions represen-—

ted by minus the sum of all elementary gra-
phs with Mayer f-bonds, which have a parti-
cle of type o and a particle of type B as
root points, while field points can belong
to particles of any type. Note that Bms(v)
can be also represented by a subset of the
elementary graphs, the "basic" set (consis-
ting of all elementary graphs with at least
triply connected field points) possessing
bonds only h bonds (1).

eff, V¢

B (v), egs. (1) and (2)
represent the hypernetted chain (HNC) equa-

instead of £
vé

Given the potential U

tions for the unknowns hus(v), Cas(v). With

zgf(v) = Uas(v) i.e. Bae(v)

= 0, these equations constitute the usual

the assumption U

HNC approximation. With a given (not neces-
sarily the exact) set of functions BaB(v),
(1)-(3) as the modified HNC
scheme (MHNC). Various integral equations

we refer to eqgs.

that result from widely used approximations
in the theory of liquids, can be cast in the
MHNC form (2). In particular, the Percus-
Yevick (PY) equations are obtained with

Bha (v) = Yog(v) =1 - 1oyt (v), (4)
where
YuB(V) = gus(v)exp [?as(v)/kBT:] = exp

EGNVH‘ (5)
Eq.(5) defines the potentials of mean force,
Haﬁ(v). From the way the MHNC equations have
been written, the exact "bridge functions",
BaB(v), actually play the role of perturbing

potentials in the usual HNC scheme, poten-
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tials that are to be determined self consis-
tently via the functions has(v), by an ite~-
rative procedure. Let the symbol { } denote
the set of all op pairs. Let us denote the
solution of egs.(1)-(3) with a given set
{B,g ()} by { has(v);'{BuB(v)}}, and let

{gush(l)} represent the bridge functions,

{Bé%)(v)}, obtained by the summation of the
infinite set of basic diagrams with the

hya(v) bonds chosen from a given set

)
{hééﬁv) }. The iterative self consistency
scheme may take the following form :

HNC

th .

(v) 5 1By, ()= 03}, thilkv);

ap

33,00, (e)

oB B

T P ) e,
The overall quantitative similarity between
the HNC and "exact" computer simulation re-
sults. for the structure, together with the
highly connected nature of the"basic" dia-
grams, suggests that the series (6) is fas-
tly convergent. We make the following pro-
position /2,3/ :

xact

8 (7)

(1) e
- < <
has (v) ha (v} 1
As it stands, this proposition is of no
practical significance since even one ite-
ration requires to sum an infinite number
of diagrams. A way out is suggested as

follows : A well founded notion, on which
the physical understanding of simple clas-~
sical fluids is based, is manifested picto-
rially in the possibility to scale both g
(v)and S(k) (the structure factor), for
quite disparate systems (potentials varying
between, say v-!, and v-«) so that they are
nearly congruent (4). In other words, there
exists a "first order” universality of

structure
{ huB(v);w, T} ~ independent of

U o}, (8)

provided we consider the whole set as fun-
ction of density aQﬂ temperature. This

first order universality provides the basis
for the successful application of the varia-
tional method with one universal reference
system (e.g. the hard-sphere system), for



a variety of potentials including the coul-
omb plasma, with good results for the ther-
modynamics /5/. The deviations from (8)are,
however, the main object of interest in the
theory of classical £fluids. These deviations
are relatively small, of the same order of
magnitude as the derivationshgﬁc(v)—hzia?S),
Thus if we maintain proposition (7). i.e.

the "one iteration" assumption, we expect

that the accuracy of { héé)(v)} can be achie-

ved also if we choose the bridge functions
from a universal set appropriate to one (any
one} particular choice of the potentials
{UGB(V) }:

'{BaB(V) ;
'{Uas(v)}.

Y, T } ~ independent of

(9)

The approximation of universality as embo-
died in (8) provides, in the context of the
variational scheme, reasonably accurate resu
lts for the thermodynamics. We iterate this
notion of universality, and expect that (9)
in the context of the MHNC scheme will give
- the corresponding first order corrections to
the statement (8).
that these "corrected" results are nearly

It turns out, however,

indistinguishable from the best computer si-
mulation data presently available, for all
physicai systems considered.

How the bridge functions look like? In the
absence (indeed the nonfeasibility) of any
diagram summation that will be meaningful
for a dense fluid, we focus attention on the

exac
computer simulation data for, gas(v), and the

thermodynamics. These “exact" results suffer
from two (among others) intrinsic limitations
g (1) gas(v) is given only in the range o<v<L
(where L3 is the volume of the basic simu—2
lation cube) that usually covers only the
first few peaks. This prohibitis the unambi-

gous determination of S(k) or C(v). This pro-

blem is treated more or less satisfactorily

izac% to the solu-

tion of some approximate integral equation
(PY, HNC,etc)/G/..(ii)‘In the region of very
5 10-3% it
is numerically impossible to calculate H(v)

by joining the tails of {g

strong repulsion where (say) g(v)

directly from the data via h g(v). The im-

portance of this quantity stems from the fact

that exp |Hu8(0)| is the first ofder approx~
imation for the enhancement factors for nuc~

lear reactions rates in dense ionized matter

"t exact
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/7/. A general scheme to extract the bridge
functions from the simulation data may con-
sist of : (i) assuming a form for'{BaB(v)}
with some free parameters, (ii) solving the
MHNC equations (1)~-(3) to find the corres-
ponding’ { gaB(V)}' (iii) altering the free
parameters until best fit for the comvuter
data is achieved. In partifcular, thermody-
namic consistency between the compressibili-
ty equation of state Via'{CuB(v)}and the
energy equation of state via'{gas(v) }
should be imposed. Even without reference
to bridge functions as a key quantity, this
scheme provides a numerically sound proce-
dure for obtaining'{sas(k)} from'{gzz?g) },
better in fact than all previous methods
used. A particular such fit will reproduce
9,8} and yield also'{cae(v) }, but in
view of the relation haB(v)= Cas(v) + HaB(v)
+ Bas(v), only the sum Haﬁ(v)+ Bas(v) can
be determined for small v, and not .each fun-
ction separately. This fitting scheme is
not sensitive at all to the values of the
fitting functions;{BaB(v) } at small v,
since a finite perturbation on an effecti~
vely infinite (since g (v)<< 1) potential
has no effect on the structure. For values
of v beyond the first peak of gas(v), Bas(v)
is of order 1 haé(v). In the context of the
MHNC scheme “this corresponds to a weak and
long range perturbing potential, whose eff-
ect on gas(v) is very small, within the noi-
se of present day simulations (about * 0.01,
i.e. 1%). We thus arrive at the conclusion
that from the standpoint of its structural
consequences, the important region for which
Bas(v) is to be specified, in any theory,
is the region of the first peak. Moreover,
in that narrow region, Bas(v) has the uni-
versal property of being effectively a re-
pulsive potential. This last result is ob-
tained by comparing published HNC and
"exact"” results for a large variety of sys-
tems. At this point universality (9) seems
very plausible and even a family of straight
lines should do a fine job of fitting the
simulation data /8/. The statement of uni-
versality (9) allows the determination of
H (v)at small v provided we know the éxact
bridge functions for|at least one system.
There is only one fluid system for which
one can regorously obtain the values of



C2-80

HuB(v) at small v in terms of computationa-
lly feasible thermodynamic quantities, and
that is the system composed of hard spheres
with diameters o¢;,05,...0_. In particular

/9, By

kBT
cess chemical potential for type o particles

and o, § 0 The computer simulation data

g
for hard spheres have been parametrized /9/
as corrected versions of the analytic solu-

tion of the PY equations, with an accuracy

that enables to infere the corresponding bri-

dge functions’{Bsg (v ; 01,...,cq) vl
For a g-component system these represent a
g-parameter family of curves. For the sake

of comparison we also construct the corres-

ponding bridge function family from the ana-
lytic PY results via eq.(4). A most interes-
ting observation is the fact that except for

a relabling of the parameters Oot the two

o and pHS,PY
Hs’exaéf% nearly indentical /2/.

families B
In other words, a set (01,..,cq) in one fa-
mily corresponds, with a high accuracy to
some set ( c{,...,cé) in the other.

That means that incorporating the PY bridge
functions in the MHNC scheme, we can dupli-
cate the computer simulation data for hard
sphere mixtures, for the pair structure and

thermodynamics, including a direct determi-

nation of Has(o). According to the conjectu-

re of universality, we should use in such a
scheme (for any potentials) the exact hard

sphere 'bridge functions. Our latest observa-

tion implies that the MHNC calculations can

be performed with theianalytic input from PY,

thus making the whole|procedure free from
any "noisy" input.

We performed the MHNC calculations for a
large variety of potentials. The following

single component systems we considered /2/ :

hard spheres, Lennard-Jones, inverse fifth

power (v-%) potential applicable to the he-

lium ground state problem, Coulomb (i.e. the

classical one component plasma), Yukawa,
charged hard spheres, and an oscilatory po-

tential proposed for liquid metals. The cal-
culations for binary mixtures include /10/ :

hard-spheres, Lennard-Jones, Coulomb (the
two component plasma). For each system con-
sidered at a given temperature and density,
a single bridge function, from the PY hard
sphere set, could be found, such that a

thermodynamically consistent solution of the

(0) = uBa where ”S denotes the ex-
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MHNC equations reproduces both the struc-
ture and the equation of state as obtained
by computer simulations to within their
noise. This solution also provides a predi-
ction for HaB(o)' in fact the only direct
prediction for this quantity available at
present.

Unlike the hard spheres, the possibility of
obtaining Hds(o) for a dense plasma (posi-
tive ions immersed in a compensating uni-
form charge charge background) relies on
specific physical considerations. For the

. 2 2

interactions Uag(v) _ ZaZBe “Z,%, T
kBT kgTv {v/a)

(where a = (3/479!1/3), the dominant strong

coupling ( I' >>1) contribution to the ex-
cess free energy is expected to have the
following form :

3
FEX  ( X1,.000%y) = _Eu'< Z)V 253> T
NkpT (10)
where,
Sy -
REEPRX

and the "Madelung" constant is well appro-
ximated by the ion-sphere model/l1/, Eis =
9/10. A regorous consequence of (10) is

!

Hyg(0) = Eu<Z)1/SI‘. [(zuzs) 5/3- za5/3—285/3]
(11)
Jancovici /7/ made use of Monte Carlo data
/12/ to improve Salpeter's ion-sphere pre-
diction for the case of the one-component
plasma. For T >> 1 both results are very
close and agree very well with our direct
predictions /2/ using. the MHNC scheme with
PY bridge functions. Our direct predictions
for a binary mixture /10/ with Z12,= 2
agree well with (11). These results provi-
de a severe test for both the accuracy of
the theory and its diagramatic interpreta-
tion.
In view of the statement of universality
and its apparent confirmation by computer
simulations, the formulation of a proce-
dure for an a priori calculation of both
the structure (including the otherwise
inaccessible H (v << 1 )) and the thermo-
dynamics of any physically concievable
pair potentials Uas(v), can be carried out
in many ways. For one component systems,



for which the hard sphere bridge functions

constitute a one parameter family of curves,

this is easily achieved by imposing thbrmo—

dynamic consistency in order to obtain! the

appropriate value of this parameter as! func-

tion of density and temperature. An essen-

tially similar procedure can be used for

mixtures but it involves more technical
details.

/1/

/2/
/3/
/4/

/5/

/6/
7’1/

7’8/
79/

/10/
/1y/

/12/
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