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DOMAIN INSTABILITIES IN LIQUID CRYSTALS 

L. M. BLINOV 

Organic Intermediates and Dyes Institute, K-1, Moscou, U.S.S.R. 

Résumé. - On a donné une classification d'instabilités obtenues lorsque des couches nématiques, 
cholestériques ou smectiques sont placées dans un champ électrique ou magnétique. Le type du 
couple qui déstabilise la distribution des axes moléculaires (du directeur L) est pris pour base de la 
classification. On a montré, que pratiquement toutes les structures spatiales périodiques observables 
(domaines) ne peuvent être expliquées qu'à partir de trois couples déstabilisants : diélectrique, 
flexoélectrique et électrohydrodynamique. 

Abstract. - A classification was given of the instabilities appearing in nematic, cholesteric, and 
smectic liquid crystals exposed to an electric or magnetic field. The basis of the classification is a 
type of the torque which destabilizes the distribution of molecular axes (director L). It was shown 
that the explanation of practically al1 the observed spatial periodic patterns (domains) can be given 
taking only three torques into account : the dielectric, flexoelectric and electrohydrodynamic. 

1. Introduction. - First of all, liquid crystals are 
liquids, and al1 the phenomena which appear in 
ordinary liquids exposed to an external field take place 
in liquid crystals as well. The optical effects are very 
much pronounced in this case because of large optical 
anisotropy of mesophases. In particular, liquid crystals 
easily visualize the mass transfer (flow), which is 
assisted by the director reorientation. Besides, there 
are some other possibilities to destabilize the uniform 
initial molecular orientation of a liquid crystal 
thanks to the anisotropy of the dielectric perrnittivity 
or electrical conductivity as well as to some specific 
collective effects (e.g., the flexo-electric one) [l]. 
For instance, using an extemal field one can change 
the director orientation in pure static way, id., 
without any mass transfer. Such a situation is realized 
for the Frederiks transition which is due to a pure 
torsional distortion. The period of the distortion 
is infinite when boundary conditions are not taken 
into account. 

Electro-optical effects caused by such deformations 
(e.g., the twist-effect) now have led to the develop- 
ment of various devices and extensive literature 
has been devoted to this subject [l]. Here, we are 
interested only in spatially-periodic, field-induced 
distortions (domains). In Our opinion, their technical 
application is a matter of the nearest future. Up to 
now there was observed a variety of different domain 
patterns. If we shall limit ourselves only by those 
of domains which show up directly from the initial 
unperturbed state, then the most typical patterns 
are the following : 

a) The transverse (with respect to the director) 
Kapustin-Williams domains [2, 31 which are excited 
by a low-frequency field in homogeneously oriented 
conductive (o # O) layers of nematic liquid crystals 
(NLCs) with negative or slight positive anisotropy 
of dielectric permittivity, E, = - E~ (the indices Il 
and I refer to the director). 

b) The longitudinal domains with a period depen- 
dent on strength of d.c. field which are observed in 
thin homogeneously oriented layers of NLCs at low 
electrical conductivity (o N O) when the transverse 
domain mode is suppressed [4, 51. 

c) The transverse domains and chevrons which 
appear in homogeneously oriented NLCs at rather 
high frequencies [6, 71. 

d )  The domains in the form of Maltese crosses [8,9] 
or fingerprints [9, 101 which were observed for homeo- 
tropically oriented NLC layers with E, > 0. 

e) The instabilities in the form of a grid, which are 
observed for the planar textures of cholesteric liquid 
crystal (CLCs) at o N O and E, > O [11] as well as 
at o # O and E, < O [12]. 

f )  The transverse and concentric domains which 
were observed by Goscianski et al. [13] respectively 
in the homogeneously (E, > 0) and homeotropically 
(E ,  < O) oriented layers of smectic liquid crystals 
(SLCa) of the type A. 

A number of domain patterns listed above gene- 
rates a n6ed for some systematization of the observed 
instabilities. The reason producing an instability 
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Domain instabilities in liquid crystals 

Characteristic 
Mechanism for time for Characteristic 

director Electrical threshold- conditions for 
destabilization conductivity frequency curve appearance Examples 

- - - - - 

Theory and 
experiment 
- 

Lamellar Helfrich, 1970 
structures of Grid instability in CLCs Gerritsma, 1971 
CLCs a4d JLCs 

Dielectric O = O Debye dipolar &a , 
Parodi instability in smectics A 1972 

M d i s ,  2, E 2  relaxation time, r ,  homogen. orient Goscianski, 1975 

2, < 0 ,  Undulation instability in SLCs De Gennes, 1974 
homeotr. orient. 

1-dimensional transverse Meyer, 1969 
distortions at weak anchorage Homogeneously 

oriented NLCs, Bobulev and Pikin, 

Flexo-electric = O Relaxation time d.c. voltage and 2'dimensional longitudinal 
1977 

for director, T, infra-low freqs, distortions in uniform d.c. field Vistin, 1970 
Mfi,, - e* E Barnik et al., 1977 

18, ( < &Yit 
1-dimensional longitudinal Petrov et al., 1974 
distortions in field gradient 

1. NLCs, CLCs, 
SLCs in field Chevrons (homogen. orient) 

charge gradient Maltese crosses, fingerprints Pikin, 1976 
relaxation time, z, 

ua-arbitrary (homeotr. orient) Barnik et al., 1976 

Electrohydro- 
dynamic 

8% 
M h y d r o  - Ri - O f 0 

ax, 
that is, 

Mhydro - R~ E 2  

(no injection) 

T,, when 2. Injection from 
electrodes Irregular 1-dimensional and Felici, 1969 

T e  % t, 
0,-arbitrary ,2-dimensional patterfis Orsay group, 1970 

Transverse Kapustin-Williams Helfrich, 1969 Kapustin et al., 1961 
domains (homogen. orient.) Williams, 1963 

3. NLCs in 
T: uniform field, Fine lattice (homeotr. orient) Barnik et al., 1975 

Oa > O 
Longitudinal domains Pikin, 1976 
(tilted orient.) Ryschenkow et al., 

1976 

could be a very convenient criterion for the syste- 
matization. We have chosen the mechanism of the 
director destabilization by an electric field as such 
a criterion. The consideration of only the electric 
effects does not lead to a lack of generality of the 
problem as al1 the magnetic effects in liquid crystals 
have their electric analogies (the inverse is not true 
because a nurnber of effects is due to the electric 
current). Let us discuss separately each of the possible 
mechanisms of the director destabilization (see table 1). 

2. Instabilities caused by the dielectric destabiliza- 
tion. - Let us consider the simplest case when the 
electrical conductivity is not essential (a = 0) and 
the molecular dipoles play only indirect role, i.d. 
determine the value and sign of dielectric anisotropy 
(the flexo-electric effect is absent). Then, the steady- 
state distribution of the director (L(r)) can be derived 
from the condition of minimum free energy which 

involves the elastic and dielectric (or magnetic) terms. 
For a volume unit : 

In the case of the nematic phase such a minimization 
does not lead to spatially-periodic solutions but 
results in the distortion of infinite period (Frederiks 
transition). For a one-dimensional problem (Fig. la, b) 
the minimum condition, F = Fm,, can be satisfied 
by the following Euler equation, which describes 
the balance of the corresponding torques : 

Ea E2 +- sin O.cos O = 0 .  
4 n 

Here O is an angle of the director deviation in the 
plane xz. E = E,, Kii = K I ,  (Fig. la) or K,, (Fig. 1 b). 
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Y /  - voltage in the planar cholesteric texture with e,  > O Tl 1, 
141. The toque balance condition is fulfilled in ibis 
case for the wavy periodic distortion [15], 

- --%$ 1 1 1 1 ' /  1 1 1 ' 1 ' 1 ~ 1 1  ,:++\\: 2 
Z - - - - -  \,\ \ \\ 

% + * =  JW'i 
(a) ( 8 )  ( c )  

8 = 0, sin 6) sin (7) , (3) 

FIG. 1. -The homogeneous (a), homeotropic (b) and tilted (c)  
orientations of NLCs. 

If we deal with lamellar phases the expression for 
the elastic torque in eq. (1) should be changed. For 
both cholesteric and smectic A liquid crystals the 
free energy minimum condition is satisfied by periodic 
solutions and appropriate domain patterns are observ- 
ed in experiments. 

Figure 2 shows the domain structure in the form 
of square grid, appearing at a certain threshold 

where O is an angle of the director deviation from 
the layer plane, d and w are the thickness in z-direction 
and domain period in x-direction, respectively (for 
a three dimensional approach there has also to appear 
a periodicity along y-axis). The threshold fields of 
the steady-state distortion are controlled by dielectric 
anisotropy, 

where K,,, K,, are the moduli of the torsion and 
bend deformations, Po is an equilibrium pitch of the 
cholesteric helix. 

The wavy distortion of the type (3) has to occur 
also in the homeotropically oriented smectic A 
phase with E, > O, when the field direction coincides 
with the layer plane. The value for the threshold 
field can be calculated exactly in the same way if one 
will change the pitch Po by the characteristic length, 

including the elastic moduli K I ,  and Bof the smectic A 
phase. Up to now, such an undulation instability 
in SLCs was only observed under conditions of its 
mechanical excitation by the layer dilation. 

Another example of the domain pattern csrused 
by the pure dielectric destabilization of a lamellar 
phase is the Parodi instability in a smectic A liquid 
crystal. Figure 3 shows a mode1 for such an insta- 
bility for E, > O and homeotropic orientation, [17] 
and appropriate domain pattern observed in 4-n- 
butoxybenzylidene-4'-n-octylaniline [13]. The thres- 
hold field of the distortion is also controlled by a 
value of E, : 

where 1 and f are the distance between smectic layers 
and dislocation energy, respectively. 

The threshold field of these instabilities is inde- 
pendent of frequency up to the dispersion range for 
E, determined by one of the Debye dipolar relaxation 
times, which is proportional to liquid crystal viscosity, 
z, - q/kT. It is the most characteristic feature of 
the dielectric destabilization mechanism that is given 

C )  in table 1. Appropriate experimental curves for the 

FIG. 2. - The Helfrich dielectric instability in the planar choles- 
grid distortion in CLCs [18] are shown in figure 4 

teric texture. a) Initial texture ; b)  Theoretical mode1 for distor- (the drap of (') at low frequencies be 
tion [15] ; c) Observed domain pattern (ce11 dimensions are ignored as caused by a non-Zero value of electrical 

80 x 80 F). conductivitv). At frequencies above 2; the threshold 
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FIG. 3. -The Parodi instability in a smectic A. a) Mode1 [17] ; 
b) Observed domain pattern [13]. 

FIG. 4. - Threshold-frequency curves for the Helfrich instability 
in nemato-cholesteric mixtures [18] ; E, > O, d = 80 p, Po = 4 p (l), 

17 P (2). 

field variations correlate with the frequency changes 
in E,, 

E i ( o )  [ ~ ~ ( o ) ]  - - 1 + oz. T: , (6) 

since, in the first approximation, the frequency 
dependence of moduli Ki, may be disregarded (in 

principle, such a dependence should be borne in 
mind [19]). To Our knowledge, at the present time 
there are no experimental data on frequency beha- 
viour of the threshold field for dielectrically induced 
instabilities in the smectic A phase. 

As mentioned above, pure dielectric destabilization 
results in domain patterns only in the case of lamellar 
mesophases. However, it should be noted that recently 
Carr has observed domains in NLCs exposed to an 
magnetic field [20]. This situation is analogous to 
the dielectric destabilization at o = O. However, 
the Carr experiments were carried out on rather 
thick samples and the Frederiks transition was 
assisted by a noticeable flow of a liquid (the back- 
flow effect). Thus, the domains arised as a result of 
the combined effect of the magnetic and hydrodyna- 
mic torques and such a situation requires a special 
consideration. 

Strictly speaking, under condition of a non-uniform 
field the additional term must be involved in eq. (1) 
which describes the interaction between an external 
field and the quadrupolar moment of a medium, 

where Q is a difference between longitudinal and 
transverse components of a quadrupolar moment 
density tensor. This term can change essentially 
the characteristics of the Frederiks transition caused 
by the field of a charged solid surface [21]. Whether 
it can result in periodic structures in the nematic 
and other mesoihases is a question to be solved. 

3. Instabilities caused by the flexo-electric desta- 
bilization. - It is well known that the flexo-electric 
effect results from the linear coupling between an 
electric field and liquid crystal distortion [l, 161. 
It can be produced by either the dipolar polarization 
of a medium (under the assumption of a specific 
form of the molecules) [22] or quadrupolar inter- 
action [23]. In any case, there is a novel term in the 
free energy formula : 

where P,,,, is a flexo-electric polarization in the field 
direction, el, and e,, are the flexo-electric coeffi- 
cients [22]. 

In the simplest case of a one-dimensional defor- 
mation, figure la, the minimization of the free energy 
functional, 

results in the same Euler eq. (2) which is indicative 
of an absence of any volume flexo-electric torque 
exerted on the director. However, the torque takes 
place at the sample boundaries and the deformation 
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starts from there. As a result, the steady-state domain 
structure can develop with a period along the 
x -a i s  [22], 

If the z-dimension of a sample is infinite, the domains 
(Fig. 5) arise at an infinitesimal field E = E,. The 
crucial condition for existence of these (transverse) 
domains is a small value of dielectric anisotropy [24]. 

FIG. 5. - The initial NLC orientation (a) and the Meyer mode1 [22] 
for flexo-electric domains (b). 

Up to now, such an instability has not been detected 
in experiments. Nevertheless, for one-dimensional 
geometry (Fig. lb, a field is directed along x) Petrov 
and Derzhanski [25] observed the waves of the flexo- 
electric deformation which spread from the sample 
boundaries into its volume and produced some 
resonance optical effects. These observations confirm 
the important role of the surface flexo-electric torques. 

Recently [26] Bobylev and Pikin have shown, 
that the volume flexo-electric torques, 

exerted on the director in the case of two-dimensional 

FIG. 6. - Two-dimensional flexo-electric distortion predicted by 
Bobylev and Pikin [26]. 

deviations from the same initial state (Fig. la), can 
result in flexo-electric domains of another type 
(longitudinal domains). In eq. (11) e* = el,  - el,, 
K = Ki,, O is a director tilt angle in plane xz, cp is 
director azimuth in plane xy. The two-dimensional 
deformation corresponding to the longitudinal 
domains is shown schematically in figure 6. 

The Pikin-Bobylev flexo-electric domains are cha- 
racterized by a sharp threshold (under condition 
of strong surface anchorage) and the specific depen- 
dences of the threshold field and domain period 
(at E,d on dielectric anisotropy : 

2 nK 
Eth = 

le* I(1 + A d '  

where p = E, K/4 ne*2. 
It is the longitudinal domains mentioned in point (b) 

of Introduction which are caused by the flexo-electric 
destabilization of a homogeneously oriented NLC 

FIG. 7. - Longitudinal flexo-electric domains in p-n-butyl-pl-methoxy-azoxybenzene (BMOAOB) (homogeneous orientation, d= 12 p, 
6 ,  = - 0.25, T = 25 OC, frame dimensions are 600 x 400 p). D.C. voltage : 16 V (a), 25 V (b) and 50 V (c). 
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layer. In order to observe such domains it is of impor- 
tance to choose a proper value for E, and suppress 
electrohydrodynamic instabilities. The second condi- 
tion is fulfilled in azoxycompounds and other electro- 
chemically stable NLCs at a d.c. voltage because 
of the inevitable electrolytic purification of substance. 
Figure 7 shows microphotographs of the domain 
pattern observed by Barnik et al. [5]. The experimental 
dependences of E,, and w,, on dielectric anisotropy 
(Fig. 8) agree well with expressions (12) (here the 
dielectric torque stabilizes the initial structure). The 
critical value for E, in the range E, < O also agrees 
with the theory : 

4 ne* 
I c a  l G -  K .  

4. Instabilities caused by the electrohydrodynamic 
(EHD) destabilization. - If a liquid moves for any 
reason the kinetic energy term should be involved 
in the free energy functional [16]. However, we 
cannot next minimize the functional as the system 
is not at equilibrium because of dissipative processes. 
Thus, in this case, it is more convenient to start 
directly from the equations which couple acting 
forces with velocity of a fluid. 

In liquid crystals, the flow gives rise to the reorienta- 
tion of the director. The appropriate torque is pro- 
portional to velocity gradient 

FIG. 8. - The threshold voltage Ut, and period w,, (at Ut,) for 
flexo-electric domains us dielectric anisotropy in doped BMOAOB. 

The divergency of Ut, at % - 0.56 is well seen. 

In the case of a non-uniform field the volume 
flexo-electric torque can also arise for the one-dimen- 
sional model. Then it is proportional to the field 
gradient and can result in periodic distortion patterns 
in the form of domains perpendicular to the initial 
orientation of the director. There have been published 
only previous results of the observation of such 
domains [27]. 

As the flexo-electric torque (and, consequently, 
the associated distortion) changes sign at field polarity 
switching, the director relaxation time manifests 
itself as a characteristic time for the threshold- 
frequency curve [26] : 

Here y, is the twist-viscosity coefficient. Usually 
T, is of the order of 0.1-1 s and the threshold voltage 
increases sharply even at infra-low frequencies. That 
is why the flexo-electric domains are hardly obser- 
vable at an a.c. voltage ; as a rule, they are masked 
by electrohydrodynamic processes. 

The most characteristic features of the flexo- 
electric instabilities are given in the second line of 
table 1. 

where a is a friction coefficient that takes account 
of the geometry of an experiment. 

In liquids of low conductivity the electro-neutrality 
of the medium can easily be disturbed, i.d., the space 
charge 6q can appear for different reasons. Inter- 
acting with an external field, this charge, according 
to the Navier-Stokes equation, gives rise to move- 
ment of a liquid (Y is a viscosity) : 

So, if there is a space charge, a liquid can move, and, 
if the velocity field is non-uniform, the torque Mhydr0 
arises which destabilizes the initial orientation of 
the director. The reasons responsible for the for- 
mation of the space charge can be different (see 
below) but, as a rule, the value of 69 is proportional 
to the field ; hence, both v and Mhyd, are propor- 
tional to E2.  In this case, the director feels the r.m.s. 
value of an a.c. field and the Maxwell space charge 
relaxation time determines the frequency behaviour 
of the threshold field for the instability : 

According to mechanisms responsible for the 
space charge formation we can distinguish three types 
of EHD instabilities resulting in domain patterns in 
liquid crystals. 

(i) The most general of them seems to be the space 
charge formation for the electrolytic separation 
of positive and negative charges by an external 
field itself, see figure 9a. It should be noted that now 
we do not consider any charge injection ; e.g., elec- 
trodes can be blocked with thin dielectric layers 
and an a.c. voltage applied across them. Near the 
electrode (at the distance L,), where the space charge 
gradient (proportional to ilE where v is an electro- 
kinetic coefficient) coincides with the field direction, 
figure 9a, the field produces the destabilizing force 
E .  6q(z) just in the same way as a temperature gradient 
destabilizes the liquid placed in a gravity field (the 
Benard problem [28]), figure 1 Ou. Such an instability 
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FIG. 10. -a) Convective instability caused by the temperature 
gradient directed from below (cold and warm streams are marked 
by letters C and W); b )  EHD instability caused by a unipolar 

charge injection. 

of a mesophase and its orientation. Let us consider 
some examples. 

Figure 11 shows the photographs of domains 
which occur in homeotropically oriented NLC layers 
at E,  > O and E = E, when the dielectric torque is 

%hl" 

FIG. 9. - Distributions of densities of positive 9, and negative 9 -  
space charges for : a) their electrolytic separation ; b) unipolar 

injection ; c) bipolar injection. L, is the Debye length. 

was observed over a wide frequency range for both 
the isotropic and nematic phases [7, 101 as well as 
for CLCs [29] and SLCs [30]. Of course, the appea- 
rance of domain patterns is dependent on the type 

FIG. 12. - The isotropic mode : frequency dependences of domain 
threshold voltage for homeotropically oriented NLCs with E, > O 
(doped MBBA, T = 22 O C ,  d = 20 p) [7]. 1 : E, = 6.5 ; 
ail = 4 x IO-" R-'.cm-'. 2-5 : E, = 0.1 ; oll = 4.2 x 10-l0 (2), 
5.6 x 10-l0 (3), 2.6 x (4), 5.5 x (5) Q-l.cm-'. Insert : 
the temperature behaviour of the threshold ; Tc is a clearing point. 

FIG. 1 1 .  - Fingerprint domains at frequencies CU < T; ' (a) and Maltese crosses at frequencies o > z; ' ( b )  for homeotropically oriented 
NLCs (doped MBBA, 8, > O, d = 20 p ,  T = 20 OC) [7]. 
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FIG. 13. -The instability pattern for a homogeneously oriented NLC with E, <: O [7]. a) Transverse (pre-chevron) domains at the vol- 
tage just above the threshold ; b) Chevron structure. 

stabilizing and the flexo-electric one is equal to zero. 
The frequency dependence of the threshold for this 
instability is given in figure 12. It is very important 
that the threshold voltage for the circular movernent 
of a liquid which is responsible for the domains does 
not change just at the phase transition to the isotropic 
phase, though, of course, the optical pattern disap- 
pears (see Insert in figure 12). 

The same type of destabilization is also respon- 
sible for the lowest voltage instability branch in 
homogeneously oriented NLC layers with e, < 0, 
figures 13, 14 [6,7]. As in the case of the homeotropic 
orientation, the threshold field is determined by 
isotropic parameters of the substance : 

const. qo 
E i  = at w < 7 i 1 ,  

V .  e2 

const. q o  
(18) 

E i  = at 0 ~ 9 7 4 ' .  
P.E 

At last, the same dependences of Et, on w  and 
material parameters can be demonstrated in the cases 
of CLCs (Fig. 15), srnectics A, and nematic phase 
with some smectic ordering and o, < O (Fig. 16). 
For instance, one can see in figure 15 that Et, is 
almost independent of the pitch of the cholesteric 
helix (it is not so in the cases of the dielectric desta- 
bilization, see figure 4, and the electrohydrodynamic 
Helfrich model, see below). Though the domain 
patterns corresponding to figures 15 and 16 have the 
specific appearance [29, 301, there is no doubt that 
they were caused by the same destabilizing mecha- 
nism. 

FIG. 14. - The isotropic mode : frequency dependences of pre- 
chevron domain threshold in NLCs with E, < O (doped MBBA, 
d = 20 p, 22 OC) [7]. oII = 3 x 10-l' (l), 4 x IO-" (2), 
5.5 x 10-l1 (3), 1.5 x IO-'' (4), 5 x IO-' (5) Q-'.cm-'. 

E, = - 0.1 (21, - 0.5 (1, 3-5). 

10 l I I I I I I I I I  I I I I  

1 0 {O* l o 3  + , H E  

FIG. 15. -The isotropic mode : frequency dependences of the 
high-frequency instability in nemato-cholesteric mixtures (MBBA 
doped with a cholesteryl decanoate, 22 OC, d = 24 p, the planar 
texture, E, < O). Pitch of the helix : Po = co (l), 10 p (2) and 1 p (3). 
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FIG. 16. - The modified isotropie mode : threshold-frequency 
curves for a domain instability in p-n-butoxy-benzylidene-pr-n- 
heptylaniline near the phase transition from the nematic phase to 
a smectic A. Transition temperatures : T,, = 83.5 OC, TNA = 56 OC, 
T*(u, = O) = 67OC. The dash curve referred to the smectic 

phase, was measured with a less accuracy. 

(ii) The charge injection from electrodes discussed 
by Felici [31] can be another reason responsible for 
the space charge formation. The distribution of 6q 
over the ce11 thickness is shown in figure 9b and c for 
an unipolar and bipolar injection, respectively. Here 
again, the interaction between the space charge 
and field gives rise to the vortical movement of a 
liquid. This movement, figure lob, can be observed 
in any weakly conductive liquid placed in a d.c. 
electric field. The threshold voltage for such a hydro- 
dynamic process has the form 

where pD is a drift ion mobility and T is a numerical 
stability criterion ( T  N 10') dependent on the inten- 
sity of unipolar [32] or bipolar [33] injection. 

In liquid crystals, this vortical movement desta- 
bilizes the molecular distribution. For example, such 
a mechanism is responsible for the domain pattern 
depicted in figure 17, which was observed in MBBA 
at a d.c. voltage [34]. 

The frequency behaviour of the threshold voltage 
is determined by the slowest stage of the space charge 
formation which, in this case, is the electrochemical 
process at electrodes, z, % z,. Let us emphasize 
once more that the mechanisms of the space charge 
formation discussed in points (i) and (ii) did not caused 
explicitly by the anisotropy of electrical conductivity 
though it can modify threshold voltages for domain 
formation, see below. 

(iii) Today, the only ionic mechanism of space 
charge formation seems to be specific for liquid 
crystals. This is the Carr-Helfrich mechanism [35] 
which is due to the conductivity anisotropy 

Let us consider a homogeneously oriented NLC 
layer, figure la, at a, > O. In this case, the field E, 
produces the space charge gradient along the x-axis, 
69, - O, E,. For the sake of simplicity, let us assume 
E, = O. Then, starting from the balance equation for 
the elastic and hydrodynamic torques, 

and taking into account the coupling between the 
fluid velocity (v,) and electric field via the Navier- 
Stokes and Poisson equations, we obtain the spatially- 
periodic (along x )  solutions for v,, and 6q. The 
x-period of the most energetically favorable dis- 
tortion is about of n/d because of the cylindrical 
form of vortices, and the threshold voltage of the 
instability is : 

Here a, is the active friction coefficient destabilizing 
the director according to eq. (20), while y, is a passive 
combination of viscosity coefficients which is involved 
in the Navier-Stokes equation to account for the 
energy dissipation associated with the field-induced 
movement of charge 6q. For E, # O the dielectric 
torque must be added in eq. (20) and we arrive to 
more complex formula for the threshold voltage [35]. 

In accordance with eq. (21) and experimental 
data [36], Ut, + co at oa + O. Moreover, the same 
instability shows up at high frequencies where o, 
increases due to the dielectric losses caused by the 
dispersion of dielectric permittivity [37]. Thus, there 
is no doubt that the instability results from the 
conductivity anisotropy. In experiments it occurs 
in the form of domains perpendicular to the direction 
of molecular axes (Kapustin-Williams domains [2, 31). 
The observed pattern, the sketch of the NLC vortical 
movement and corresponding changes in the director 
inclination from the x-axis are shown in figures 18a 

FIG. 17. - Domain pattern in MBBA at a D.C. voltage (U=7 V) and 19a- 
which is due to the charge injection from electrodes [33]. For the initial homeotropic orientation the desta- 
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FIG. 18. - a) Kapustin-Williams domains in a homogeneously oriented layer of MBBA (U = 7.5 V, f = 64 Hz, domain period is 20 p). 
b) Instability in the form of fine lattice in a homogeneously oriented layer with 8, z O (doped MBBA, a x IO-' Q-'.cm-', U = 98 V, 

d = 40 p) 1381. 

FIG. 19. - Distributions of the space charge and director incli- 
nation angle (dash lines) at different field polarities for Kapustin- 
Williams domains at frequencies below the critical (a) and for 
« dielectric » regime at frequencies above the critical (b) : flows 

are shown by arrows 

bilizing effect of torque 1 a, av,/ax 1 is compensated 
by stabilizing torque 1 a, av,.az 1 appearing near ce11 
electrodes. As 1 a, 1 g 1 a, 1 the instability can occur 
only under condition that the vortices would be not 
cylindrical but contracted along the x-direction, 
that is, the domain pattern has to have a small period 
compared with the ce11 thickness. Such a pattern 
has been observed in [38], figure 186. 

The Carr-Helfrich mechanism is also respogsible 
for domains which were observed in homeotropically 
oriented layers exposed to a field perpendicular to 
the director [39]. 

With increasing frequency up to the critical, 
which now is determined by a new space charge relaxa- 
tion time T; involving anisotropic parameters of 
a liquid crystal, the threshold voltage increases 
sharply, figure 20, because of the decrease in the 
amplitude of the space charge separated along x [40]. 
According to the one-dimensional theory of Orsay 

FIG. 20. - The Helfrich EHD instability : threshold-frequency 
curve for MBBA (d = 100 F, T = 25 O C )  161. Region 1 : The 
threshold of Kapustin-Williams domains caused by anisotropic 
properties of a NLC. Region II : As in the case of figure 14, should 

be referred to the isotropic mode. 

group [40, 411, at frequencies above the critical the 
instability regime has to change significantly. The 
steady-state distortion shown in figure 19a is replaced 
by periodic oscillations of the director, figure 19b. 
The threshold field of this new (so-called dielectric) 
regime has to depend strongly on anisotropic para- 
meters of a liquid crystal [40, 71. The latter result has 
been confirmed recently by extensive numerical cal- 
culations which were carried out for the more rigorous 
two-dimensional mode1 1421. 

In Our opinion, the true dielectric regime of the 
Carr-Helfrich instability has not been observed yet 
in experiments because of the masking action of the 
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isotropic instability discussed above, which has the 
same frequency dependence of the threshold field, 
Eth - ( 1- 

At low frequencies and under condition that o, > O 
the Carr-Helfrich instability has been also observed 
in CLCs and in the nematic phases with some smectic 
ordering. If the ce11 thickness is considerably more 
than the pitch of the helix, the dornain pattern takes 
the same form as in figure 2b, c [12]. For d N Po 
one can observe a number of either one-dimensional 
or two-dimensional periodic distortions in different 
Grandjean zones, figure 21. In this case, the threshold 
voltage oscillates with increasing ce11 thickness, 
figure 22 [43] (at d % Po this dependence becomes 
monotonic [44, 45, 141). 

Using the Carr-Helfrich mode1 one can explain [46] 
the formation of longitudinal domains (their direction 
coincides with the director projection on the layer 
plane) in the case of the initial tilted orientation, 
figure lc.. The threshold voltage for such an insta- 
bility is calculated from the balance of the stabi- 
lizing elastic torque and destabilizing electrohydro- 
dynamic one caused by conductivity anisotropy [47], 

Uth - sin 0, ' 

where 0, is an initial tilt angle of the molecules. 

The longitudinal domains of electrohydrodynamic 
nature were also observed at o, < O in the nematic 
phases with short-range smectic A ordering [48, 
49, 301. In Our opinion, the conductivity anisotropy 
results in additional space charge which indirectly 
modifies the frequency dependences of the threshold 
field for the isotropic instability discussed in point (i). 
At present, this problem needs be considered theoreti- 
cally. 

FIG. 21. - Threshold deformation pattern near Cano-Grandjean 
d i s c l i n a t i ~ ~  in the planar cholesteric texture (Po = 115 p). Arrow 

b shows the rubbing direction of glass plates. 

FIG. 22. - Oscillatory dependence of the threshold voltage on 
the thickness of a planar cell (Po = 115 p) 1431. The dash curve 
is based on the Helfrich-Hurault theory [44] for the case d % Po. 
n is the number of half-turns of the helix in the Granjean zone. 

(') It has been found just before the 7th Int. Conf. on Liquid 
Crystals by Durand and Ribotta (see abstracts of the conference, 
post deadline supplement). 

5 .  Conclusion. - Thus, we have considered the 
most typical examples of domain patterns which 
were mentioned in Introduction. Of course, they do 
not exhaust a number of observed instabilities. For 
instance, we do not even touch on little studied 
instabilities in the smectic C and B phases as well as 
in the chiral ferroelectric phases CF and H". In 
addition, various modes often interfere, resulting 
in very complex patterns. To illustrate, the combi- 
nation of the flexo-electric and electrohydrodynamic 
modes results in oscillatory solutions [50], however, 
up to now, there are no experimental data on this 
theme. A list of the domain patterns observed in 
liquid crystals grows steadily but, unfortunately, 
not in al1 the papers one can find enough information 
to refer one or another phenomenon to a certain 
mechanism. 

Meanwhile, appropriate references are of impor- 
tance not only from the scientSc but from the prac- 
tical point of view as well. For exarnple, to reduce 
the threshold field for an instability of homogeneously 
oriented layers one must increase 1 E, 1 in the case 
of the dielectric destabilization and decrease J E ,  1 
when the instability is caused by the flexo-electric 
or electrohydrodynamic torques. Just so, different 
parameters are responsible for the spatial period, 
frequency spectrum and kinetics of various instabi- 
lities. 

The author is grateful to S. A. Pikin and V. G. Chi- 
grinov for many helpful discussions, and M. 1. Barnik, 
S.  V. Belyayev and A. N. Trufanov for supplying 
their experimental results. 
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