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REVlEW ON RECENT WORKS ON VORTICES I N  SUPERCONDUCTORS 

E .H. Brandt 

Ames Laboratory - USDOE and Dept. o f  Physics, Iowa State University, 4mes, Iowa 50011, u.s.A.* 

R6sumd.- On passe en revue : a) les solutions num6riques de la thdorie de Gorkov pour le rdseau ide- 
al de vortex dans le domaine entier de champ et de tempdrature, et b) les solutions de la thdorie de 
Ginzburg-Landau pour le r6seau d6form6 et leurs applications 3 l'ancrage des vortex. 

Abstract.- We review : a) the numerical solutions of Gorkov's theory for the ideal vortex lattice 
in the entire field-temperature plane, and b) the distorted-lattice solutions of the Ginzburg-Landau 
theory and their application to flux pinning. 

1. THE IDEAL VORTEX LATTICE.- Following Gorkov's 

extension of the microscopic BCS theory of supercon- 

ductivity /I/ the properties of the ideal flux line 

lattice (FLL) initially were calculated for about 

15 years only in the special cases t = T/T 2 1 

(Ginzburg-Landau (GL) and Neumann-Tewordt approxi- 

mations) and b = BIBc2 2 1 (linearized Gorkov theo- 

ry). Solutions for the entire temperature-induction 

range have been obtained only recently using two 

numerical methods (I and II), which complement each 

other. This is visualized in figure 1 and in tableI. 

Fig. 1 : Range of validity in the temperature-induc- 
tion-plane of various solution methods for 
Gorkov's equations 

Method I, developed mainly by L. Kramer and 

W. Pesch, uses Eilenberger's energy-integratedGreen 

functions of the electrons 121. This version of 

Gorkov's theory applies to arbitrary electron mean 

free path, Q. It is suitable for calculations of 

the thermodynamic /3,4,5/ and transport / 6 /  proper- 

ties and the density of states /5,7/ of type-I1 

X 
On leave from Max-Planck-Institut fcr Metallfor- 

schung Institut fcr Physik, Stuttgart, Germany 

superconductors. Since this method requires a large 

numerical effort / 8 /  it has been applied so far on- 

ly to rotationally symmetric solutions. i.e. to the 

isolated vortex or, within a circular cell method, 

to the FLL with sufficiently large lattice spacing, 

d >> Min (MvF/akT, Q) . 
Method 11, developed by the author, starts from 

Gorkov's free energy expression for clean supercon- 

ductors (Q = m) and extends the BPT-approach 19-121 

to arbitrary induction. The Green functions are eli- 

minated analytically using the spatial periodicity 

of 1 A 1 (energy gap) and H (magnetic field). The re- 
sulting free energy is an explicit functional of ] A (  

and H and may be minimized by a Ritz variational 

method. We use a finite Fourier series with 5 inde- 

pendent coefficients as a trial function for H, and 

various periodic trial functions for 1~1'. This me- 

thod yields A, H, and the magnetization curves with 
good accuracy even on a small computer. 

We summarize some of the results : 

The magnetic field of an isolated vortex at 

low temperatures exhibits a rather narrow and high 

peak at the vortex center. Such a sharp peak, dege- 

nerating even to a cusp at T = 0, was first calcu- 

lated by Delrieu /13,14/ for a clean superconductor 

near H . He found that the Fourier coefficients of 
C 2 

H decrease slowly, as where K is a reciprocal 
FLL vector, and to have alternating signs. The sad- 

dle points and the minima of H interchange their 

positions at t = 0.62 for the clean superconductor. 

At t = 0, H is zig-zag-shaped along the nearest 

neighbor directions. Method I1 confirmed this sur- 

prising behavior in the large induction range 

0.5 b < 1 . At b % 0.5 the sharp minima of H almost 
touch the plane H = 0 and then flatten out. A fur- 

ther interesting result is that some of the Fourier 
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Table I 

coefficients of H are negative at b = 1 but become 

positive as b is lowered. Their vanishing at a cer- 

tain value of b should be observable by neutron dif- 

fraction. 

The gap parameter is found by both methods 

to exhibit a narrowing of the vortex core at very 

low t. This effect is most pronounced at small band 

was investigated in more detail in /15,16/, whereit 

was found that in a clean superconductor at t = 0 

the slope dl~l /dr becomes infinite at the vortex 

core. For the spatial average of / A [  method I1 gi- 

ves the simple relationship <[A\ 2>/~&.s = I-b ? 0.05 

for all values of b, t, and for all GL-parameters K. 

In the magnetization curves a first-order 

phase transition occurs at the penetration field 

HAl in low-K clean materials. This is consistent 

with experiments. The curves B(Ha) (Ha is the applied 

field) obtained by method I1 and shown in figure 2 

have a slightly S-shaped, almost vertical part from 

which H' and the induction jump B are determined 
c 1 

by a Maxwell construction or by equating the area 

under the curve to u H'. A small change in the cur- 
0 C 

ves B(H ) can, therefore, result in a large change 

of Bo, even if H' is almost unchanged. A quantita- 
cl 

tive agreement with experimental values for B 
0' 

which have been measured with high accuracy by de- 

coration, magnetic and neutron scattering experi- 

ments 1171, cannot be expected, mainly since the 

calculation is based on the simple BCS-model-inter- 

action between electrons on a spherical Fermi sur- 

face and thus neglects "real metal effects". 

METHOD I1 

FREE ENERGY FUNCTIONAL 
FOR PERIODIC A 1 AND H 
ONLY PURE 'UTERIALS (? )  

ONLY STATIC PROPERTIES (?) 

RITZ VARIATIONAL METHOD 

MODEST 

PERIODIC TRIAL FUNCTIONS 

ARBITRARY INDUCTION 

NO 
NO 
YES 
YES 
YES 
YES 
YES 
YES 

STARTS FROM 

APPLICABLE TO 

SOLUTION METHOD 

COMPUTATIONAL EFFORT 

FORM OF SOLUTIONS 

INDUCTION RANGE 

METHOD YIELDS : 

DENSITY OF STATES 
TRANSPORT COEFFICIENTS 
MAGNETIZATION CURVES 
INDUCTION JUMP Bo 
LATTICE SYMMETRY 
SHEAR MODULUS 

A AND H NEAR VORTEX CORE 
A AND H NEAR CELL BOUNDARY 

Fig. 2 : Magnetization curves of a type-I1 supercorr 
ductor at t = 0.5 for various values of K. 
The dashed lines belong to metastablestates 

METHOD I 

ENERGY-INTEGRATED 
GREEN FUNCTIONS 

ALL MEAN FREE PATHS, STATIC 
AND TRANSPORT PROPERTIES 

SOLVES SYSTEM OF DIFF. EQS. 

LARGE 

CIRCULAR CELL 

SMALL INDUCTIONS 

YES 
YES 
YES 
NO 
NO 
NO 
YES 
NO 

Finally we remark on cubic FLLs and on 

"FL attraction", an interpretation of the first or- 

der transition at HA1. These features have been of 

great interest, since they are clearly seen in some 

experiments on low-K material, but could be explai- 

ned by GL theory. Several authors tried to derive 

F1 attraction analytically from the Gorkov equations 

and, at the same time, explain its origin. The nu- 

merical methods yield the attraction but do not gi- 

ve a simple explanation for it. The analyticalcal- 

culations showed that a field reversal of the iso- 
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lated FL is not necessary for FL-attraction. It also Up to the present, nearly all theoretical 

would give too large a value for the equilibrium dis- 

tance if the neighboring FL is assumed to sit in the 

field minimum. It is rather an additional potential 

term which compensates the magnetic repulsion and 

leads to a net attraction of FLs. This term, which 

may be called the "gap parameter", "core", or "con- 

densation energy1' attraction, is present even in the 

GL theory. For K > 1/2~/' it is always smaller than 

the repulsive term, but at K = 1/2'12 it exactly com- 

pensates the magnetic repulsion such that all FL- 

configurations have equal free energy. For K close 

to 1 /2lI2 any small correction to the GL free energy 

could possibly lead to a domination of the attrac- 

tive term. 

A similar statement holds for the symmetryof 

the FLL : the GL-theory and method I1 yield a sta- 

ble triangular FLL for all values of b, K, t. Howe- 

ver, the difference in the free energies of the cu- 

bic and hexagonal symmetries is extremely small. 

Any small additional energy term could, therefore, 

suffice to stabilize the cubic lattice. Such a term, 

for example, may arise from coupling between the 

FLL and an anisotropic crystal lattice, but, as ob- 

served recently, a cubic FLL may occur also in a 

hexagonal matrix 1181. 

2. ON A RIGOROUS TREATMENT OF FLUX PINNING.- Very 

recently some progress has been made towards a rigo- 

rous treatment of fluxpinning at imperfections of 

the crystal lattice. As pointed out in various re- 

view articles 119-241 there is still a discrepancy 

between experimental values of the volume pinning 

force PV obtained, for example, from flux-density 

gradients or from critical currents, and theoreti- 

cal values obtained by a statistical summation of 

elementary pinning forces estimated from GL theory. 

This discrepancy may amount to several orders of 

magnitude if PV itself is compared and not, as is 

often done, just its square root. A particularly 

troublesome problem is the theoretically predicted 

but experimentally unobserved threshold for the 

elementary pinning forces, below which summation 

theories yield PV = 0. Furthermore, the observed 

dependence of PV on magnetic history is not explai- 

ned by existing summation theories 1211. These 

challenging problems are still unsolved, and a ri- 

gorous treatment starting from GL theory seems to 

be required. The work reviewed here is one step in 

this direction. 

work on flux pinning used the concept of individual 

flux lines (FLs) interacting with each other and 

with the pinning centers by a two-body interaction. 

This picture is very useful. It can be derived from 

GL theory for sufficiently low induction. The inter- 

action between FLs turns out to be composed of a 

magnetic repulsion and a condensation-energy attrac- 

tion, which is most important for small K 125,261. 

Unfortunately, the interacting-FL picture breaks 

down as soon as the vortex cores begin to overlap. 

This happens already at rather low inductions 

b 0.3 as can be seen from figure 3 in reference 

1261. In contrast to widespread opinion, this break- 

down also occurs in superconductors with large K .  

The proper range of validity for the London model 

is, therefore, b << I and not K>> 1 (if the genera- 

lized interaction potential is used). 

LOCAL 

L' ( 0 )  
I' 

/ 
J' NONLOCAL, 

F L L  

." 
Fig. 3 : a) The elastic matrix component $xx(k,O,O). 

b) The compressional modulus 
cP (k) = n$xx(k,O,O) /k2. Arbitrary units. Dashed 
llnes : local continuum, dotted lines : lattice 
with short range forces, solid lines : FLL with 
kg/kh = 4 corresponding to K = 4, b = 0.4, or 
K = 0.9, b = 0.75 

A rigorous treatment of the pinning problem 

127-311 should start from a free energy functional 

of the form I281 

F = F  + F  + F  
O l d  ( 1 )  

where F describes the homogeneous material and in 

the following shall be chosen as the GL functional; 

F1 is the perturbation caused by inhomogeneitis,and 

F introduces a driving force causes, e.g., by a 
d 
transport current. In what follows we omit all sur- 

face phenomena by considering an infinite FLL, and 

we assume the perturbations F1 and Fd to be small. 

In principle the solutions Y (GL function) and A 
(vector potential) could be obtainqd by standard 

perturbation methods using an expansion in terms of 

some eigenfunctions. We do not follow this path but 



rather use a perturbation method which retains, and 

thereby generalizes, the useful concepts of "FL po- 

sitions" (defined as the zeros of Y and denoted by 

r where v is a FL index, or by r (z) for bent FLs, 
-v 7, 

where z is a line parameter for which we choose the 

coordinate z along Ha) and "Force densities on FLs" 

(denoted by P or by Pv(z), a force per cm). Both 
-v 

vectors r (z) and P (z) have only two independent -v -v 
components since we deal with lines. 

The main trick of our method is the intro- 

duction of the "distorted-lattice solutions" Y and 

A . They are defined as the solutions which minimize 
-s 
the unperturbed-functional F with the constraint 

that Y have first order zeros along the FL posi- 

tions r (2). After insertion of Y and A the free -v -s 
energy functional (1) reduces merely to a function 

of all FL positions r (or to a functional of the 
-v 

r (z) if the FLs are bent). The minimization of F -v 
with respect to the FL-positions is equivalent to 

solving the force balance equation (virtual displa- 

cements ! )  

el driv 

for all values of v and z. Here the first term re- 

produces the normal definition of the elastic force, 

the second term defines the pinning force, and the 

last term is the driving force per unit length of 

each FL element. 

3.-THE DISTORTED-LATTICE SOLUTIONS.- Until recently, 

solutions of the GL equations for a distorted FLL 

were known only for low inductions, where IYI is 

essentially constant, 11 is a linear superposition 
of isolated vortex fields, and the free energy is a 

sum over the two-body interactions between FLs (or 

FL-elements if bending is allowed). At larger in- 

ductions, only periodic solutions were known. Pe- 

riodic solutions, as a matter of principle, do not 

tell anything about the inhomogeneously distorted 

lattice. Furthermore, they cannot give the forces 

on each FL in the FLL, but these are required in 

order to calculate the strain caused by a pinning 

center. The force on one FL has to be calculated 

from the free energy of a FLL in which the given FL 

is slightly displaced. 

One, therefore, needs distorted-lattice so- 

lutions which apply to the entire induction range 

0 < b < 1. We find these by the following method 

1281: first, we calculate the correction to the pe- 

riodic solutions '4 and A linear in the displace- 
v 

ments s (z) = r (z) - R from the regular positions 
-v -v -v 

R = (Xv ; Yv ; z ) .  For convenience we do this for 
-v 
periodic displacement fields, s (z) = 

-v 
~e{% exp(ikR )I ; the generalization to non-perio- -v 
dic displacements is by linear superposition. A di- 

vergence at k/(l-b) + 0 is removed by means of the 

nonlinear terms in the GL equations. In the results 

for Y, A and F appear two characteristic wave vec- 
tors, 

where 5 is the coherence length, A = K<, and 

kg = (2b)'l2/5 is the radius of the circularized 

Brillouin zone ( B Z ) .  The results can be transcribed 

into expressions which apply even to large displa- 

cements if the strain is small, e.g., 

becomes : 

(6)  

where ~ ( 2 )  = ~e{s exp(ik)) and k = Ikl < 0.7 kg. 
a 

As a next step, the corresponding expressions 

are calculated for the limit b << 1 .  They turn out 

to be very similar to the results for b $ 1 if ap- 

propriate representations are chosen. The high in- 

duction results approximately apply, therefore, to 

the entire induction range 0 < b < I. One can quite 

generally state that extensions to low b of results 

derived at high b give ordinarily much better ap- 

proximations than extensions of the London model to 

larger b. 

Looking carefully at the small-strain results, 

one finds that they can be reproduced from the fol- 

lowing more transparent expressions, which we assu- 

me to approximately apply to arbitrary distortions 

(if b, <1YI2>, ky, and k are allowed to vary spa- h 
tially) and to arbitrary b and K ($ is the phase of 
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grad $(r) = rot 1 (8) 
V 

, (9) 
v - + 2 / 2 2  c 

where C 1. Equations (7) to (9) reduce to the cor- 

rect solutions in all special cases investigated so 

far, (7) and (8) exhibit the correct singularities 

along the FLs, and (9) satisfies divX = 0. These 

expressions should be useful trial functions in nu- 

merical calculations going beyond linear elasticity 

theory. 

4. THE ELASTIC RESPONSE OF THE FLL.- The elastic 

energy of the strained FLL has the general form 

{$  1; 5 ( + + 5 y y y 1 2  (I0) 
x x x  X Y X Y X Y  

where n = B/$~, 4 (k) is the elastic matrix of the 
aB - 

FLL, 

- - 
= (sx ; s ; 0) is the Fourier transform of the dis- 

Y 
placement field, & (k) and g(k) are periodic in the 

a@ - 
k -k -plane, and the integration is over the first 
X Y  
BZ of the FLL. For the FLL with hexagonal symmetry 

one has within local elasticity theory 

(12) 

where cll is the uniaxial compressional modulus, c~~ 

the shear modulus, and c,, the tilt modulus of the 

FLL . 
Equation (12) applies to a FL continuum. For 

a discrete lattice with nearest neighbor interac- 

tions, the parabolae k2 and k2 are replaced by pe- 
Y 

riodic functions of the type [(~/d)sin(kd/2)]~, and 

the local approximation (12) still applies if 

k <kg 2 v/d, i.e., if the strain varies slowly over 
the lattice spacing d. For the FLL with moderate or 

large b or K the interaction is of long range, and 

the picture changes completely as shown in figure 3. - 
The correct GL-result for $aB- a simple sum (for 

b a 1) or a double sum (for b 2 1) over reciprocal 

FLL vectors - may be approximated for k < 0.7 k B by 
an expression similar to equation (12) but with cll 

and c,, replaced by functions of k = (&I : 

dH 
cll (k) = B2 

1 

dB (1 + k2/ki-)(I +k2/$) 
(13) 

and with unchanged shear modulus c~~ z Btd~~/dB) 

(1-b)2/10b~2. Equations (13) and (14) and the modi- 

fied equation (12) apply to arbitrary b and K and 

are called the "continuum" or "isotropic" approxi- 

mation. 

Our results show that for the FLL local elas- 

ticity theory applies only if k <<kh, i.e. if the 

strain varies slowly over the length A/ ( I -b) 1/2, which 

may be much larger than d = 2.7 A/~bl/~. AS & goes 
from 0 to kg, cll (k) and c (k) decrease by factors 

44 

k;kG/kg = (1-b)~/2b' K' and 2ktki = (I-b)/blc2, res- 

pectively. The correct lattice sums for 5 (k) yield 
aB 

an even larger decrease of the FLL stiffness and al- 

so exhibit a pronounced anisotropy close to the BZ 

boundary. - 
The compliance I/$ (k,O,O) is sharply 

XX 
peaked at the BZ boundary. As a consequence, planar 

pinning forces yield a weakly damped oscillatory 

displacement field, with amplitude usually much lar- 

ger than the constant strain superimposed to it 1301. 

This surprising result follows even from the London 

model. It means that, close to a planar pinning cen- 

ter, neighboring FLL planes are shifted in opposite 

direction. 

The dispersion of the compressional and the 

tilt moduli has a large effect on the maximum value 

of the elastic FL displacements caused by local pin- 

ning forces. This is shown in table IIfor planar for- 

ces, line forces parallel and perpendicular to the 

FLs, and for point forces. The results of the pre- 

vious ( S  ) and the present (S ) theories may differ 
L NL 

by several orders of magnitude ; they coincide only 

for line forces parallel (more precisely : at an 

angle less than ( c ~ ~  /cb4 )'I2 % (I-b) /3K) to the FLs. 
The linear elastic behavior of a lattice of 

straight FLs can be reproduced to good accuracy by 

the induction-dependent potential 

between FLs, where r = I r - r I and K is the 
-v l.l 

Hankel function. This means that for small strain 

the FLL behaves as if the FLs interact by the two- 

body potential (15) composed of a magnetic repulsion 

of range X/(1-b)1/2 1321 and a "core attraction" of 
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Table I1 

range 0.7 ~/(l-b)'/'. This potential could be used to 

calculate, at least approximately, some nonlinear 

elastic properties of the FLL. 

5. PINNING FORCES.- As an example, we illustratethe 

pinning forces derived from the above theory forthe 

case of a point pinning center with diameter 2 5 and 
with position 5 = (a ; a y ,  aZ). A general expres- 

sion for the perturbation energy of such a defect is 

TYPE OF 

PINNING 

FORCE 

PLANAR FORCE 
PAIR 

6(x-D) - 6(x+D) 

LINE FORCE 
PARALLEL 

6(x) 6(y) 

LINE FORCE 
PERPENDICULAR 

6(x) 6(z) 

POINT FORCE 

6(x) 6(y) 6(z) 

where Y = Y(z), A = A(a), and ao, Bo, yo, b, Xoare 
constants. For small inductions we find (a) that 

P ( z )  depends only on the distance Ir ( ~ ) - ~ l  between -v -v 
FL element and defect and (b) that all types of pin- 

ning forces can be derived from potentials which 

depend on this distance. These properties were ex- 

pected and have been used in summation theories. 

At larger inductions b >0.3 the character ofpinning 

forces changes :The P (2) in general depend on r (2)  -v -v 
and o n 2  separately. The forces exhibit different be- 

havior depending on the interaction type. This is shown 

in figure 4 :Magnetic forces (&#O or XoPO) still 

decrease monotonically with Ir (2)-&I and still de- -v 
rive from a potential. But defects coupling to 

Y(a0 # 0, 6, # 0, or yo # 0) are oscillatory func- 
tions of r (2) and do not derive from a potential. -v 
In particular, the entire force field vanishes iden- 

tically when the pinning center coincides with the 

CORRECTION FACTOR SNL/SL 

POSITION OF PINNING CENTER- 

GENERAL 
EXPRESSION 

1 + D d K " ~ )  b 

1 

2K2 b 3/2 
1 + 

3 ln(D/d) (z) 

1 + - K (-1 b lI2 

"5 

MAXIMUM FL DISPLACEMENT 

Fig. 4 : The force exerted by a point pinning cen- 
ter situated at I = 5 on the FL at = 0, plotted 
for three different types of interacxion, equation 
(18). L.h.s. : The x-component of the force plotted 
versus ax for a = 0 

~.h.s. : Y~ines of equal force in the &-plane 

S~ 

% 1 %L 
C1l b2 

% - % -  1 K~ 
'66 b(~-b)~ 

%- % -  I 

%c' b2 
' L 1 %  

JC66 b3I2 (I-b) 

axis of any FL. This means that a pinning center 

located at a FL center does not exert a force on 

any FL if it couples to Y, but it repells or at- 

tracts all FLs (except the one it is sitting at) if 

it couples to E. This result is due to the fact that 
the general expression for 1'4'1 is a product (7) of 

factors each of which has a zero along one FL, whe- 

reas E is the sum (9) of modified isolated vortex 
fields which decrease monotonically. 

These results show that our concept of pin- 

ning forces, and of the elastic response of the FLL 

'NL 

A -  
(1-b)2 

%- K~ 

b(~-b)' 

% I? 

% K2 
b(~-b)~/' 

EXAMPLE b = 0.8 

~ = 1 . 5  

100 

1 

3 

~ = 3 0  

40000 

1 

4000 

5 0 
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to them, has to be modified at medium and large in- 1261 Brandt, E.H., Phys. Status Solidi (b) 2 (1972) 
duc tions . 345 

1271 Brandt, E.H., J. Low Temp. Phys. 6 (1977) 709, 
735 

This work was supported by the U.S. Depart- 
1281 Brandt, E.H., J. Low Temp. Phys. 8 (1977) 263, 
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Materials Sciences Division and-by the Deutsche 1291 Schmucker, R., and Brandt, E.H., Phys. Status 

Forschungsgemeinschaft. Solidi (b) 3 (1977) 479 , 

/30/ Brandt, E.H., Phys. Status Solidi (b) 3 
(1977) 269, 237 
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