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FLUXON-BREATHER-PLASMA OSCILLATION DECAY IN LONG JOSEPHSON JUNCTIONS

G, Costabile, R.D. Parmentier, and B. Savo

Istituto di Fisica - Universitd di Salerno - I-84100 Salerno, Italy

Résuméd.—- Les solutions exactes de 1'&quation de sine-Gordon, qui décrivent les oscillations sur
une jonction Josephson longue et uni-dimensionnelle avec conditions au bord de circuit ouvert,
suggdrent que les tourbillons qui ralentissent jusqu'Zd une vitesse critique de propagation se
transforment en "breathers", qui i leur tour, lorsque leur amplitude diminue jusqu'ad la valeur
critique, se transforment en oscillations du plasma.

Abstract.~ Exact solutions of the sine-Gordon equation describing oscillations on a long, one-
dimensional Josephson junction with open cifcuit boundary conditions suggest that fluxons that

slow to a critical propagation velocity decay into breathers, which in turn, when their ampli-
tude diminishes to a critical value. decay into plasma oscillations.

The solutions of the sine~Gordon equation with
finite boundary conditions recently reported by Cos-
tabile et al, /1/, which furnish exact analytical
expressions for the three fundamental types of os~—
cillations on long Josephson junctions, viz., flu-
xons, breathers, and plasma oscillations, suggest the
existence of excitation/decay mechanisms between
these modes of oscillation. The analysis of such me-
chanisms is of considerable importance in the study
of applications of the Josephson junction as a gene-
rator of high frequency radiation/2/ and as an ele-
ment for digital computation/3/.

Neglecting dissipative effects, a long, one-
dimensional Josephson junction is described by the
equation

Pyx ~ Pre =

sin ¢ (1)
where ¢ is the magnetic flux normalized respect to
h/4we, x is distance normalized with respect to the
Josephson penetration length XJ, and t is time nor-
malized with respect to the inverse of the Josephson
plasma frequency Wy The boundary conditions
9,€0,6) = 0 = 6, (L,¢6) )
correspond to imposing open—circuit terminations at
the two ends of such a junction having normalized
length L. Physically, such boundary conditions can
be closely approximated by using an "overlap" geo-
metry /4/. Fulton /5/, in a series of remarkably
detailed observations on a mechanical analog, has
recently reviewed the qualitative nature of the so-
lutions of (1) under the boundary conditions (2).We
repeat here, for convenience, the analytic solutions
obtained by Costabile, et al. /1/.

1) Plasma oscillation (see figure 20 of
Fulton /5/) :

_1
¢ = 4 tan Eé cn(Bx;kf) cn(Qt;kgz] 3)
where
_ A2[RZ(1+a)+] ~ A2 (B2 (1+42)-1]
ke = Bz (1+a2)?2 j'k; T Q2(1+A?)2 (4a,b)

and Q, B and A are related by the nonlinear disper-
sion equation

2 _ a2 _ 1-a2
Q-8 1327 ()
Imposition of the boundary conditions (2) fixes the
spatial periodicity as

2n
Bn = 1K (kf) (6)

where n = 1,2, ... is the number of nodes in the

standing wave and K(k) is the complete elliptic in-

tegral of the first kind. For n = 0, the entire

length of the line oscillétes in phase as

o =4 tan * [& sn(@t;k)]; k = A% and Q= 1/ (1+A%) (7)
2) Breather oscillation (see figure 28 of

Fulton /5/) :

_1 .

® =4 tan - {A dn[@(x-xo);kf:]sn(Qt,kg)} (8)
where -
K2 o1 - LoBRQxan) /A’ L a?[1p2aah] (9a,b)
£ B2(1+A2) g Q2 (1+A2)

and the nonlinear dispersion equation is

B = QA. (10)
The boundary conditions (2) now require

=2
Bn =1 K(kf) (11)

with two possible values for x, : a) on = K(kf),
and b) X, = 0. For n even, a) corresponds to brea-
thers located near the center of the line, and b)
corresponds to fluxons bound to virtual antifluxons
at both ends of the line. For n odd, a) and b) are

equivalent.
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3) Fluxon oscillation (see figures 25 and
26 of Fulton /5/ :

¢ = 4 tan ‘[ du(Bxikp tn @t3k) ] 2)

where BZ(AZ -1 (13a,b)
2 _ _ 4 o AR -1-1]

kg =1- 82(A2—1) s kg =1 02 (A D)

The nonlinear dispersion equation is again as in (10)
and the boundary conditions (2) again require (11).
The existence of excitation/decay mechanisms
between these fundamental modes of oscillation is sug-
gested by the following observationms.
1) Breather-plasma oscillation excitation/
decay :
Setting B < A/(1+A%) in (8) and (9) yields solutions
that map onto those with B > A/(1+A?). Setting B =
A/ (1+A2%) in (9) yields k% = 0 and k; = A", Recalling
that dn(X;0) = 1, and assuming A < 1,
Setting B= A/(1+A2) in (11)

w/2 thus yields a minimum

this substitu~
tion reduces (8) to (7).
and recalling that K(0) =
value for A in (8) as

_ L L g 102
Ami.n T om _[(HT_T) - 1]

O plasma oscillation, on the other hand, can

(14)

The n =
exist for all A in the range O < A < 1. These facts
suggest that for A < Amin’ a breather must necessari-
ly decay into an n = O plasma oscillation provided
that, from (14), L/n > 7, and that an n = O plasma
oscillation with A > Amin can excite a breather.
2) Fluxon-breather excitation/decay :

Setting B > AZ/A%-1) in (12) and (13) yields solutions
that map onto those with B8 < A%/A%-1), Thus, setting
B = A%2/A%-1) in (11) and (13a) yields a maximum value

for A in (12) as

2
Amax £

- BK({l - /Al DY (15)

z
Amax,f

Setting s= A/ (A%2-1)¥2in (13) yields K2 =1
and k; = 1, Recalling that dn(X;1l) = sech(X) and
tn(X;1)=sinh(X), this substitution, with the identi-
fication A = 1/u, where u is the velocity in the cen-
ter of mass reference frame, reduces (12) to the form
of the fluxon~antifluxon collision on the infinite
line reported by Scott, et al. /6/. Recalling that
K(1) » «© , these results imply that solutions of the
type (12) can be found on the finite line for all A
such that solutions of the type (12) can be found on

the finite line for all A such that 1 <A <A £

Setting B < A?/(1+A%) in (8) and (9) yields
solutions that map onto those with B > A2/ (1+A2).
Setting B = A%2/(1+A%) in (11)and (9a) and assuming

A > 1 thus yields a maximum value for A in (8) as

2

Amax b n b V2
e = R - /At DY) 16
max,b
Breathers, accordingly, can exist for Aminf A<
Amax,b'

From (15) and (16), Amax,b < Amax,f; however,

for L/n >> 1, the two maxima tend toward equality.

Recalling that sn(iX;k) = i tn(X;k'), the transfor-
mation A +~ -iA, - i, B » § , which preserves

(10), transforms (8) and (9) into (12) and (13).

Recalling that a breather represents a bound state
of a fluxon and an antifluxon, these facts suggest
that a fluxon that slows to near the critical pro-
pagation velocity (A - Amax f) while encountering
an antifluxon can decay into a breather, and that

a breather that increases in amplitude to near

Amax,b can excite a fluxon-antifluxon pair.
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