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JOURNAL DE PHYSIQUE

GAUGE GROUP AND PHASES OF SUPERFLUID 3He

V.L. Golo and M.I. Monastyrsky

Colloque C6, supplément au n° 8, Tome 39, aoiit 1978, page

C6-50

Institute of Theoretical and Experimental Physics, Moscow, U.5.S5.R.

Résumé.- On propose une classification des phases A et B qui ne fait appel ni 3 la contrainte d'uni-
tarité, ni a des restrictions sur l'aimantation nucl@aire et la susceptibilité.

Abstract.~ The p-wave phases of superfluid *He are classified without the unitary constraint or the
constraints on the net nuclear magnetization and the magnetic susceptibility.

In paper/!/ for different phases of superfluid
He in the state of p~wave pairing we studied the
topology of spaces of the order parameter (i.e. va-
cuum manifolds) by means of the gauge group
80(3)1x 50(3)2x U(1) of the transformations
A->e ¢R]AR2 (1)
Here A is a complex 3x3-matrix of the order parame-—

ter, R. is a rotation matrix in the spin part and

1
R, is rotation matrix in the orbit part. In the pre-

sznt paper we suggest an algebraic method which en-—
ables to get explicit formulae for the order para-
meter and to amend some statements of paper/1/.

Under the constraints that the net nuclear ma-
gnetization vanished in the absence of an applied
magnetic field and the magnetic susceptibility was
unchanged from its normal state value N.D. Mermin
and G. Stare found six distinet p-wave phases by

minimizing the free energy fumctional/4/,

F= otr(AA’) +B;|traa®|? + 8,|eraa’|? +

Ba[er(anty (aa%)¥] + guer(aa®)?) +

Bstr(("an) (*aa)®) )
They proved that two of these phases were unstable
against variations of the order parameter, when the
constraints were relaxed.

Another condition which enables to find the

p—wave phases is the unitary restriction/4-5-6/,

€. A%A nn
ijkpiqipq
where A ., A .
p1 q3

ter matrix and np

=0 (3)

are the entries of the order parame-
is a real unit vector, n® = 1.
There exist four p-wave phases with the unitary res-—
triction, but only two of them are stable/5-6/. The-
se gtable phases are generally accepted as the A-
and B-phases of 3He.

We do not use the unitary assumption or cons—

traints on the net nuclear magnetization and the
magnetic susceptibility. We study the order parame-
ter by means of the gauge group and its subgroups.
Indeed, in our opinion this ﬁroblem mainly concerns
the symmetries of the system. We do not study the
problem of the minimization ; the stability of the
phases is to be discussed elsewhere.

Following paper/1/ we assume that all the va-
lues A of the order parameter for a p-wave phase are
generated by transformations (1) with A = Ao. If
there is no superdegeneracy ordering to the singula-
rities of the space of the order parameter, this
condition means that the phase is fixed by the value
of Ao' Then the problem of classification of the
phases is reduced to the proper choice of Ao s which
can be described by the subgroup H = H(AO) of the
gauge transformations leaving A0 invariant. Thus we
may say that the SO(3)I’x SO(3)2 x U(1) - gauge
H(Ao).

It is easy to indicate the spaces of the or-

symmetry is broken down to the subgroup H =
der parameter where the gauge symmetry is complete-

ly broken, e.g. if A0 is a Jordan matrix of the rank

equal to 3 then the subgroup H is trivial®. Another

example to the effect is a diagonal matrix with un-
equal diagonal entries ; it is not hard to prove
that for it the subgroup H = H(Ao) is trivial. We do

not know under what contraints on the coefficients

+To prove the statement we note that for any non-
unit rotation matrix R we have RAL#A,, AgR#A,. This
means that in SO0(3); ,2 We have no subgroups leaving
Ao invariant. If thete were such subgroups in

S0(3)| x S0(3)2, we should have RAGR™ ? A, for some
R. Since the Jordanian matrix A generates an irre-—

. ducible matrix algebra A and the matrix R must be-

long to the commutator Flgebra of A. Schur's lemma
requires that R be a unit matrix, (c.f. H. Weyl

"The Classical Groups' for the specific information).
The similar arguments are applied for the Jordanian
matrix of rank 2, when the subgroup H is also tri-
vial.
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0,B1,..5B5 these phases can be minima of free ener-
gy (2) and how the dipole interaction energy chan-
ges the form of the order parameter ; it presents

a rather complicated analytical problem. The magne-
tic field contribution to the free energy is more
tractable. If the coherence length £, the magnetic
length EH and the dipole interaction length ED sa~
tisfy the constraint £<<EH<<£D we may cancel out
the dipole interaction terms for the systems having
the scale R, £H<<R<<ED. Then it is particularly in-
teresting to know what degeneracies of the order pa-
rameter still remain after the magnetic field A is
taken into account. The answer to this question
shows that the phases with the trivial subgroup
H(Ao) are highly anisotropic. Let us write down the

magnetic energy contribution in the form/5/,

F, =g A A HH =g *a%H.4AR0 (%)
H gHApi qi p q 8y .

since A = R]AOR2e1¢, we have

T, =,gH*A§ﬁ'.Aoﬁ' , B = R;lﬁ (5)

. . >
We shall minimize FH with respect to H' and then
we shall make some conclusions concerning the order
parameter. To simplify the calculations we suppose
that A is a diagonal matrix, (A )..
o o' 1j
The case of Ao being a Jordan matrix of rank 2 or 3

is similar. Now we may write down FH

F.. =

3 2 2
- G ii g1 *mg (6)

1
Since we are interested in the symmetry of the order

parameter we may minimize (6) with respect to the

3 - > * .
direction of H' or just the same under the constraint

H? = const. The answer is straightforward, there are
three directions of the field ﬁ' which minimize (6)
and which correspond to the axes of Ao' Now we re-
turn to equation (4) and want to find what cons-~
traints are imposed on the order parameter b by the
original magnetic field H. Equation (5) tells, that
we may put the answer for the minimization problem
for (6) in the form A = RZAOR;l where R;]

tion matrix such that i = R;lﬁ minimizes (6) and

is a rota-—

R_ is any. The rotation matrix R, is defined by the

vilue of H' up to a SO(3)-matrix multiple RH’ which
leaves A invariant. Therefore we may conclude that
in the magnetic field the degenmeracy of the phase is
not defined in the unique way like in the case of
the A~ and B~phase, but that in the spin part the
space of the order parameter is three linked circles
(Sl,Sl,S'l)linked = L(Sl). The wholg]space JH of the
order parameter is a product of L(S ) and the group
of the orbital rotations 80(3)2 and U(l),JH = L(S])

= Xiaij A1#d2#As
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x S0(3) x U(1).

Now we turn to the less degenerate phases
with the subgroup H(Ao) being non-trivial. The pre-—
vious analysis indicates that we must exclude all
A0 having Jordan blocks of rank more than 1. OQur
main idea is to study the possible forms of AO by
their rank and eigenvalues. To get around the dif-
ficulties generated by the complex eigenvalues we
apply the following trick. We change the matrix AO
into a matrix D by means of the transformation

S |
D=X AX )

With 4 non-singular matrix X. Let us consider the
group G1(3)l X Gl(3)2 of pairs of complex non-sin-
gular 3 x 3 matrices and its action on complex

3 x 3 matrices

-1
2

In the group G1(3)] X G1(3)2 we consider the sub-

(XI’XZ)M = XIMX

group HC which leaves the matrix D invariant, i.e.

D = SID Szl. The original subgroup H = H(Ao) of
SO(3)1 X SO(3)2 x U(1) is transformed by (7) into
a subgroup of HC since we have
slx'l cox Hxs,! = x s ;X Ha sy 'x hx
o

It is important that H and therefore its'conjugate
in HC are compact groups. We may take the matrix X
such that the matrix D should be the most simple.

As we have demonstrated, if Ao has a Jordan
block of rank > 2 or all its eigenvalues are dis-
tinct, then the subgroup H = H(Ao) is trivial., The~-
refore we may consider now the opposite case, when
(i) at least two of the eigenvalues are equal or
(ii) the matrix Ao is of rank 1. Under these cons-—
traints we shall write down the order parameter.
(Ao)ij=A6ij
H(Ao) = 80(3) ; the order parameter space is
80(3) x U(1). It is the B-phase.

(1) All  eigenvalues are equal ;

(2) Two eigenvalues of Ao are equal, A;=A,#0
We may take the matrix D in the form
Aoo
D=|0Xo

Oou

The subgroup Hc is pairs of non-singular matrices
(51,52) : (sl)ij = (Sz)ij H (Sl)iB = (Sl)3i = 6i3
The compact subgroups are the images of the diagonal
subgroup in the group SO(3)] x SO(3)2»x U(1). The
space of the order parameter is

S0(3); x S0(3), x U(1) / S0(2)

The case W = O is often singled out (c.f. /5/) ; it
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is called the 2D-phase.

(3) Two. eigenvalues of Ao are equal to zero.
The arguments similar to the previous n° show that
the subgroup H(Ao) = 80(2)1 X SO(Z)2 and the space
of the order parameter is
SO(3)1 b4 SO(3)2 x U(1)./ SO(Z)1 b4 SO(2)2
This is the polar phase/5/.

(4) The matrix Ao is of rank 1 and is not sym—

metric, then we may choose D in one of the two forms
'

- A
ORN Ol

A

D, = of Dy = 2
A, Azl0 o olo

\

The matrices D , are invariant under the transfor-

I,
mations 0 v
* 0 " y13

L
D]-»D] = ] JD} ’Dz—)Dé =;Dz 23
%31 *32 oo0| 1

The corresponding compact subgroups are isomorph to
S50(2). Hence we obtain the subgroups SO(2)1 x {1},
SO(2)2 x {1} of the gauge group SO(3)l x SO(3)2 X
U(1). For the A-phase we need the subgroup SO(Z)] X
{1}; the order parameter A is of the form
(8]
O
Ay A

where A; A, are coordinates of the complex vector
K, the real and imaginary part of X being unit vec—
tors K',Z". This constraint is very important since
it influences the topological type of the space of
the order parameter, Indeed, we see that the subsi-
diary condition on the real and imaginary part of

K reduces the space of the order parameter
SO(3)r X SO(3)2 x U(1) / 50(2)l

to the product S2 x S0(3).

CONCLUSIONS .~ We want to emphasize that the method
we used to classify the p-wave phases can be succes-—
sfully applied to higher pairing states. The neces—
sity to study high dimensional representations of
S0(3) x S0(3) = S0(4) introduces some cumbersome
details which can be sucessfully overcome.

P-wave phases with completely broken gauge
symmetry, if they do exist, should have some inte-
resting properties. They should be highly anisotro-
pic. In the magnetic field the space of the oxder
parameter is the product of SO(3) and three linked
circles in another copy of SO0(3). This property sug-

gests the existence of complicated domain structures

(c.£. /1-2/)
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Appendix

These are the following subgroups H(A ) which we
differentiate with respect to the imb8dding into the
gauge group.

1. H(Ao) = {1} ; the trivial subgroup.

2. H(Ap) = S0(3) ; the diagonal subgroup in SO(3) x
- S0(3). The B-phase is contained in this class.

3. H(A,) = 80(2) = {(R;R), R belongs to S0(2)}. The
unstable 2D-phase is contained in this class.

4. H(Ao) = 50(2) x S0(2) = {(R{;R2), S0(2);,2
S0(3)y_,} The polar phase is contained in this
class.’

5. H(Ay) = {50(2),, 80(2);C=S0(3);, i = 1,2}. The
A-phase 1is contained in this class for i = I.



