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THE ELECTRON CYCLOTRON MASER INSTABILITY (*) (+) 

P. SPRANGLE, V. L. GRANATSTEIN and A. DROBOT (**) 

Naval Research Laboratory Washington, D. C .  20375, U. S. A. 

R6sume. - L'instabilitk maser cyclotron a une double importance ; d'abord il y a un interst 
scientifique fondamental dans cette forte instabilite d'un ensemble d'electrons spiralant dans un 
champ magnbtique ; ensuite, cette instabilite est la base d'une nouvelle catkgorie de gknerateurs 
d'ondes millimktriques de puissance (gyrotrons), qui sont en train de trouver une application au 
chauffage r. f. de plasma dans les appareils de recherche sur la fusion contr61Ce. Dans cet article, 
les thCories lineaire et non Iineaire sont considerkes. Des effets relativistes associes avec les klectrons 
spiralant sont responsables de I'amplification d'un mode transverse Clectrique de guide d'onde. 
L,'Bvolution temporelle non lintaire de I'amplitude du champ et de la frkquence d'une seule onde, 
est dicrite. La dynamique d'onde non lineaire est determink de faqon auto-consistante a partir 
des orbites non lineaires des particules, par les equations de force et d'onde. On trouve deux 
mkcanismes de saturation de la croissance de l'onde : (1) epuisement de I'knergie Iibre disponible 
dans les electrons tournants ; (2) piegeage en phase des electrons avec I'onde. La compktition 
entre les deux mkcanismes de saturation conduit a un etroit maximum pour IYefficacitC de conver- 
sion d'energie en fonction de l'knergie du faisceau. La theorie a kt6 utilisCe pour construire un 
amplificateur gyrotron non linbaire ayant 340 kW de puissance en sortie 35 GHz avec une 
efficacite optimiske B 51 % dans le referentiel du plasma. 

Abstract. - The cyclotron maser instability has a two-fold importance, first, there is fundamental 
scientific interest in this strong instability of an ensemble of spiralling electrons in a magnetic 
field ; second, this instability is the basis for a new class of powerful millimeter wave generators 
(gyrotrons) which are finding application to r.f. heating of plasma in controlled fusion research 
devices. In this paper, both the linear theory and the nonlinear theory of the instability are consi- 
dered. Relativistic effects associated with the spiralling electrons are responsible for amplification 
of a transverse electric waveguide mode. The temporal nonlinear evolution of the field amplitude 
and frequency of a single wave is described. The nonlinear wave dynamics are selfconsistently 
determined from the nonlinear particle orbits through the force and wave equations. Two mecha- 
nisms for saturation of wave growth are fond : (1) depletion of the available free energy associated 
with the rotating electrons ; (2) phase trapping of the electrons in the wave. Competition between 
the two saturation mechanisms leads to a peaking in the energy conversion efficiency as a function 
of beam energy. The theory has been used to design a nonlinear gyrotron amplifier with 340 kW 
output power at 35 GHz with efficiency optimized at 51 % in the laboratory frame. 

1.  Introduction. -The electron cyclotron maser frequency (or its harmonics). Initially, the phase of 
instability is generated by a beam of electrons fol- the electrons in their cyclotron orbits are random, 
lowing helical trajectories around the lines of an but phase bunching can occur because of the rela- 
axial magnetic field. The electron ensemble interacts tivistic dependence of electron cyclotron frequency 
unstably with an electromagnetic wave whose fre- on electron energy. Early descriptions of the physical 
quency is near the Doppler shifted electron cyclotron process are to be found in the works of Tw~ss [I], 

Schneider 121, and Gapanov [3]. The first experimental 
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capability becomes compatible with operation at 
millimeter and submillimeter wavelengths. Indeed, 
the highest recorded millimeter wave power, both 
peak and average have been achieved through the 
cyclotron maser process. The high peak powers were 
achieved in a series of experiments using intense 
relativistic electron beams (V - 1 MV, I 30 kA) 
and powers achieved include 900 MW at /Z = 4 cm [7], 
350 MW at h = 2 cm [S], 8 MW at A = 8 mm [9], 
and 2 MW at A = 4 mm [9] ; however, efficiency of 
converting electron beam energy to e.m. radiation 
was only -- 1 %. Our analysis shows that there 
are a number of reasons for the observed low efficien- 
cies with intense relativistic electron beams, among 
them the high levels of current and voltage and 
excessive energy spread in the beam. 

On the other hand, the high average powers were 
generated with high effi~iency and witli current and 
voltage levels similar to those in conventional micro- 
wave tubes ; thus, the high average power work 
leads directly to practical devices which already are 
finding application in electron cyclotron resonance 
heating (ECRH) of Tokamak plasmas [lo]. The 
initiative in developing high average power cyclotron 
masers has been taken by workers at the Gorkii 
State University (USSR) [ l l ,  121 who have called 
their devices gyrotms. The key to achieving efficient 
devices was careful design of a new type of electron 
gun. In the Gorkii studies, a crossed-field magnetron 
injection gun was used to launch an annular electron 
beam with a large fraction of energy transverse to the 
axis and with minimum energy spread. Work on 
nonuniform cross-section open resonantors to opti- 
mize beam-wave coupling has also taken place. All 
together these developments have led to demonstra- 
tion of a technological breakthrough in CW milli- 
meter wave generation. Using a superconducting 
magnet, Zaytsev, et al. [ l l ]  have generated the fol- 
lowing CW powers : 12 kW at A = 2.78 mm with 

I kW GYROTRON 

FIG. 1. - State-of-the-art CW power sources. 

31 % efficiency ; 2.4 kW at A = 1.91 mm with 9.5 % 
efficiency ; and 1.5 kW at h = 0.92 mm with 6.2 % 
efficiency. Figure 1 compares these results wlth CW 
power available from other microwave devices ; 
an advance in CW power capability by 4 orders of 
magnitude is clearly indicated. 

Work on the linear theory of the cyclotron maser 
shows that the instability is due to the coupling of 
the supraluminous TE waveguide mode and a beam 
cyclotron mode [13-171. The instability may be 
either absolute or convective in nature. For a review 
of the theory on excited nonlinear oscillators as 
applied to the cyclotron maser, see the article by 
Gapanov, et al. [18]. 

To our knowledge, the first nonlinear evaluation 
of the electron cyclotron maser mechanism involved 
numerical integration of the electron orbits in fields 
of either constant amplitude and/or constant fre- 
quency [14, 19-13]. These nonlinear theories do not 
fully treat the particles and wave dynamics in an 
inherently self-consistent manner. 

In this paper a comprehensive study of the self- 
consistent nonlinear evolution of the electron cyclo- 
tron maser instability is presented. We have included 
both a time-dependent frequency shift and a time 
dependent field amplitude in our analysis. A rather 
simple physical picture of the nonlinear behavior of 
this instability shows that there are two mechanisms 
responsible for wave saturation [24]. The analysis 
is self-consistent in that the particle and wave dyna- 
mics are treated as a unit. Saturation efficiencies at 
the fundamental waveguide mode and cyclotron 
mode are obtained. A method of externally controlling 
the saturation process, and thereby further improving 
conversion efficiencies, is discussed. 

The physical mechanism of the electron cyclotron 
maser is described in Section 2. Properties of the 
linear dispersion relation are discussed in Section 3. 
Here simple expressions for the linear growth rate 
and frequency shift are obtained. The linear theory 
indicates that the growth rate maximizes when the 
axial beam velocity is equal to the group velocity 
of the excited wave. This fact can be used to simplify 
the analysis by performing all calculations in the 
beam frame which now coincides with the cutoff 
frame where the axial number, k,, vanishes. The 
results are then transformed back to the laboratory 
frame. In Section 4 we derive the equations for the 
nonlinear growth rate and frequency shift of the 
excited wave. The nonlinear single wave formalism 
treats both the particle and wave dynamics self 
consistently. The equivalence of our temporal mode1 
with the steady state spatial growth of a wave in an 
amplifier is pointed out. A number of simplifying 
assumptions have been made in our analysis, the 
one of major practical importance being neglect of 
initial beam temperature. The conditions for the 
validity of this approximation are discussed in Sec- 
tion 5. Section 6 describes the two nonlinear saturation 
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processes of the cyclotron maser instability. There 
we show that the depletion of free energy and/or 
particle phase trapping is responsible for wave satu- 
ration. The dominant mechanism depends on the 
initial choice of beam parameters. Simple analytic 
expressions for the field amplitude at saturation are 
obtained. From the slow time scale orbit equations 
we obtain a constant of the motion for a fixed ampli- 
tude and frequency field. This constant is used to 
examine the nonlinear particle orbits in phase space. 
Section 7 contains the numerical results of our for- 
malism for a wide range of beam parameters. These 
results include field amplitudes and efficiencies at 
saturation. Comparison of these results with the 
analytic expressions given in Section 6 is made. 
Methods for improving the efficiency at saturation 
are also discussed and examples given. Section 8 
describes application of the theory to designing an 
efficient millimeter wave gyrotron in the form of a 
travelling wave amplifier with output power of 
hundreds of kilowatts. 

2. Physical Mechanism. - Insight into the physical 
mechanism responsible for the electron cyclotron 
maser instability can be obtained from the particle 
trajectories shown in figures 2a and 2b. These figures 

FIG. 2. - The mechanism responsible for the electron cyclotron 
maser illustrated by orbits of test particles in velocity space in 
the presence of a small external field. (a) initial particle 

and (b) bunched particles after several cycles. 

show the orbit dynamics of sample electrons initially 
uniformly distributed along a gyro orbit. The electrons 
are rotating in the counter clockwise direction about 
a uniform and constant magnetic field, B,;,. Without 
loss of generality we assume the electron velocity 
in the z direction to be zero. The initial radius of the 
sample electron ring is the Larmor radius 

where v,, is the initial perpendicular velocity, 

is the nonrelativistic cyclotron frequency and 

2 -112 
Yo1 = (1 - vLlc ) 

is the relativistic factor. 
The introduction of a small constant amplitude 

electric field, 

as shown in figure 2a, will alter the particle orbits. 
We first examine the particle trajectories when the 
frequency of the electric field is equal to the initial 
relativistic cyclotron frequency, w, = Q,/y,,. The 
time rate of change of the particle energy is 

where vy(t) is the y component of particle velocity. 
With the initial choice of field direction shown in 
figure 2a particles 8, 1 and 2 will lose energy and tend 
to spiral inward. The relativistic cyclotron frequency 
of these particles will increase, since y, decreases, 
and their phase will tend to slip ahead of the wave. 
Particles 4, 5 and 6, on the other hand, will gain 
energy, their cyclotron frequency will decrease and 
they will tend to spiral outward. The phase of these 
particles will tend to slip behind the wave. After an 
integral number of wave periods, the particles will 
become bunched around the positive y-axis. Particle 
bunching is, therefore, caused by relativistic effects, 
since the rotational frequency of the electrons is 
energy dependent. 

To obtain a net exchange of energy between the 
particles and wave, w, must be slightly greater than 
QO/yo1. If o, 2 f2,/y0,, the particles on the average 
traverse a coordinate space angle less than 2 n in 
a wave period, 2 nlw,. All the particles will then 
slip behind the wave and the distribution of particles 
after an integral number of wave periods will be 
bunched in the upper half plane as shown in figure 2b. 
As a result of the phase slippage between the particles 
and the field, the net kinetic energy of the ensemble 
of particles decreases. Conservation of total energy 
implies that the field amplitude increases resulting 
in instability. If w, remains greater than Q,/y,, the 
particles will continue to slip behind the wave. 

Depending on the initial beam parameters, the 
group of bunched beam particles may : i) continue 
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to slip behind the wave, or ii) initially slip behind 
the wave, reverse itself and begin to oscillate about 
the positive y-axis. We will see later on that these 
two different processes lead to two distinct saturation 
mechanisms. In either case, the bunched particles 
will eventually appear in the lower half of the trans- 
verse plane after an integral number of wave periods. 
When this occurs, the particles will gain energy and 
the wave amplitude will begin to decrease. 

3. Linear Theory. - Using the Maxwell-Vlasov 
equations, the linear dispersion relation for the elec- 
tron cyclotron maser instability is easily calcula- 
ted [lo, 191. The electron beam and waveguide con- 
figuration employed for this purpose is shown in 
figure 3. This configuration will also be used in the 

CONDUCTING 
PLATES 

FIG. 3. - The electron cyclotron maser configuration in plane 
geometry. 

nonlinear analysis. In figure 3 a beam of gyrating 
and drifting particles is assumed to hrve the same 
perpendicular velocity, u,,, and parallel velocity, 
voll, with respect to the applied axial magnetic field 
Bo. The guiding centers of the particles lie midway 
between the two conducting plates. The system of 
particles and fields is assumed independent of the 
spatial y variable. The field components within 
the waveguide are those of a TE,, mode (i. e., E,, 
B, and B, are the only nonvanishing field compo- 
nents). The functional dependence of the fields on z 
and t has the form exp(i(ko z - cot)). The perturbed 
current density when used in conjunction with the 
wave equation for E,,(x, z, t )  leads to the following 
linear dispersion relation in the laboratory frame 
for the configuration shown in figure 3, 

where k, = nn/2 a is the perpendicular wave number, 
n = 1,2,3, ... is the waveguide mode number, 

is the modified plasma frequency, o0 is the surface 
charge density of the beam in the x - y plane, 
I = 1,2,3 is the magnetic harmonic number, 

QO = I e l Bolmo c , Po, = vo,lc 7 

and J, is the Bessel function of order I. If n + I is 
odd, the TE,, mode is stable since the right hand side 
of eq. (1) vanishes [25]. The first term in the bracket 
on the right hand side of (1) is always stabilizing 
while the second term is always destabilizing. Further- 
more, the frequency of the unstable wave in the rest 
frame of the electrons is slightly greater than the 
cyclotron frequency, yo(@ - ko voll) 2 52,. We have 
seen in Section 2 that this requirement is necessary 
for a phase slippage to occur between the particles 
and field. It is clear from the dispersion relationship 
in Eq. (1) that the maximum growth rate of the modi- 
fied TE,, mode occurs for frequencies and wave 
numbers near the intersection of the vacuum wave- 
guide mode 

and the cyclotron mode, o - ko voll - IQo/y, = 0. 
When the perpendicular velocity of the particles, 
v,,, vanishes the cyclotron wave is a positive energy 
wave. Since the waveguide mode is also a positive 
energy wave, there can be no instability for vo, = 0. 
If, however, vo, # 0, the cyclotron mode splits into 
a positive and negative energy polarity wave as can 
be seen from the fact that ( o  - ko uoll - ISZo/yo)2 
appears in the denominator of the destabilizing term 
of eq. (1). The coupling of the negative energy cyclo- 
tron wave and positive energy waveguide mode is 
responsible for the instability. In the limit of vanishing 
beam density, 0, -, 0, or vanishing perpendicular 
velocity, v,, + 0, the opposite energy polarity 
cyclotron waves coalesce and become degenerate. 

Seeking a solution to eq. (1) near the intersection 
of the modes we set o = oo + 6wo where 

and 

Substituting o = 0,-3. 60, into (1) and keeping 
terms to order yields the following relation 

where 

and 
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The solutions of eq. (2) yield complex roots when 
Z,, > (213) Am,. This condition can be stated as a 
threshold condition for instability, requiring that the 
perpendicular velocity be greater than a critical 
value [27], 

POL > P 1 , c r i t  

where 

At the critical value of p, the stabilizing and destabi- 
lizing terms in eq. (1) just balance each other. The 
beam has no free energy available for driving the 
instability when yo, = y,,crit, where 

The roots of eq. (2) can be easily evaluated in two 
regimes : (i) POL 2 B,,crit, and (ii) PO, % P l , c r i t .  In 
the first regime, (i), the perpendicular energy of the 
beam is close to the critical value and the saturation 
is caused by the depletion of free energy. In the second 
regime, (ii), the perpendicular energy of the beam is 
well above the critical value and, as we will show in 
Section 6,  the saturation mechanism for the instability 
is phase trapping of the particles by the excited wave. 

Case (i). - Here, Po, 2 P ,,,, and the second 
term on the right hand side of eq. (1) is larger but 
comparable to the first term. The linear frequency 
shift and growth rate take tlie form : 

ri = Im (6~00)~ = 3 - 1 / 2 ( ~ ~ o ) 2 / 3  (3 ~ , , / 2 ) - ~ / ~  

x ((3 2,,/2)' - A2 C O ~ ) " ~  

x (Z,, Ao, - 2 A ~ w ~ / ~ ' > ~ ' ~  . (3b) 

The growth rate for this case is proportional to the 
fourth root of the surface charge density. 

Case (ii). Here, POL a fl,,c,it and the second 
term on the righthand side of eq. (2) dominates. The 
linear frequency shift and growth rate of the wave 
are : 

The growth rate for this case is proportional to the 
third root of the surface charge density, 0,. 

Choosing the practical situation where n = 1, x, 
is small, W,, m 114, Q,, m 112 and 

mo x Oo/yo w ck, 

gives for the growth rates in cases i) and ii) the follow- 
ing 

and 

The critical perpendicular velocity in this regime is 
given by 

The condition that the n-th waveguide mode and 
the I-th synchronous mode intersect on the dispersion 
curve limits the value of x,. It is easy to show that 
x, is bounded by 0 < x, I. Figure 4 depicts the func- 
tions W,,, and Q,, as functions of x, for 1 = 1, 2, 3 
and 4. Figure 5 shows the dispersion diagram for the 
cyclotron maser instability when 

voll = 0, 0 0  = ckn = 1Qo/y0 and I = n = 1 

FIG. 4. - The functions Qnz(xn) and Wnz(~n) VS. XR for 
1 = 1, 2, 3,4. 

[0.4$2.0.y I GROWTH RATE 

NEG. ENERGY 
CYCL. MODE - -- - 

FIG. 5. - Typical dispersion curve for cyclotron maser ins- 
tability. This case is for yo, = 1.2, JrL = 0.05 COO, 

wo = ckn = lQolyol and I = n = 1 

0.8--4.0 
,--- 

Note that the cyclotron mode splits into two branches 
of negative and positive energy polarity. The negative 
energy cyclotron mode couples to the positive energy 
TE guide mode resulting in an instability. The growth 

- 
\POS. ENERGY . CYCL. MODE 
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rate maximizes at k, = 0. If the cyclotron frequency 
were greater than the guide cut-off frequency, 

Q O ~ Y O ~  > ckn 7 

the growth rate would have two peaks at I k, I > 0, 
symmetric about the k, = 0 axis. The maximum 
growth rate for Qo/yo, > ck, is always less than the 
maximum growth rate for O,/y,, = ck,. This can 
be seen in figure 6 where growth rate contours are 
shown as functions of (Qo/y0,)/(ck,) and (cko/ckn). 

FIG. 6. - Contours of the growth rate for the cyclotron 
maser instability vs the parallel wave number and the cyclotron 
frequency. This case is for y o l  = 1.2 and w~/&I = 0.05 WO, 

where wo = ~ k n  and I = n = 1. 

We note that, in general, the growth rate is maximum 
when the wave group velocity, u,, equals the axial 
beam velocity, voll. This becomes apparent if we trans- 
form to the beam frame (voll = 0) and note that for 
fixed Po, and k,, the growth rate is largest when 
k, = 0 (i. e., when o, = Oo/yo = ck,). At k, = 0, 
the group velocity vanishes and, therefore, v, = voll = 0 
in this frame. Since both v, and voll transform in the 
same way, the growth rate maximizes when v, = vOll 
in all frames. 

4. Non linear Formalism. - In this section the 
basic equations governing the nonlinear behavior 
of the electron cyclotron maser instability are derived 
using a single wave model. The single wave approach 

has been shown to be valid under a wide range of 
situations [24]. 

We first express the nonlinear dynamics of a single 
wave in terms of an ensemble average of the non- 
linear particle orbits. The particle orbits are related 
to the fields through the relativistic Lorentz force 
equations. The resulting wave and force equations 
are then numerically solved to obtain the self-con- 
sistent behavior of the particles and the field. This 
analysis describes the nonlinear evolution of the 
field amplitude and frequency as a function of time. 
The beam and waveguide configuration shown in 
figure 3 is chosen as our basic model. 

We have noted in Section 3 that the linear growth 
rate for the excited TE,, mode maximizes when the 
axial beam velocity and the wave group velocity 
are equal. We chose to analyze this situation since 
we are interested in the regime of maximum wave 
growth. Furthermore, for convenience, we transform 
to a frame in which both the axial beam velocity 
and wave group velocity vanish. Since the group 
velocity is now zero in this frame (cutoff frame), 
we note that the axial wave number of the wave is 
also zero. The electric field, in the cutoff frame, of 
the vacuum waveguide mode has the form 

E,(x, t) = - E,(t) cos(o, t + a(t)) sin(k,(x - a)) , 
(7) 

where k,=nn/(2 a) and n is a positive integer such 
that E,,(x, t) satisfies the appropriate boundary con- 
ditions at x = + a. In eq. (7) the frequency o, 
is a constant, while the amplitude, E,(t), and the 
frequency shift, da(t)/dt, are weak functions of time 
(e. g., d In(E,(t))/at, aa(t)/dt < o,). The amplitude 
Eo(t) can be expressed as 

where E, is the initial field amplitude and f ( t )  is the 
time dependent growth rate. We note that in the linear 
regime of the instability the frequency shift and 
growth rate are constant and equal to their linear 
values, da(t)/dt = AmL and Q t )  = r,. 

Associated with the electric field in eq. (7) is the vector potential Ay(x, t) given by 

Ay(x, t) = (c/oo) { (1 - ;/coo) Eo sin (o, t + a) + (SO/oO) cos (w, t + a) } sin (k,,(x - a)) , (8) 

where Ay(x, t) is valid to first order in the small parameters T(t)/o, and ;(t)/o,. The time evolution of Eo(t) 
and a(t) is determined by the particle current density, Jy(x, t), through the wave equation for A,(x, t) : 

(d2/8x2 - c-' 8'/8t2) Ay = - 4 nc-' Jy . (9) 

Substituting (8) into the wave equation and keeping only lowest order terms in the small parameters r/o, and 
&/coo yields the relation : 

( (w: - c2 kt + (cZ kt + WE) (;/w,)) Eo sin (o, t + a) - (c2 k: + og) (ho/coo) cos (ao  t -t- a) ) x 

x sin (k,(x - a)) = - 4 noO Jy(x, t) . (10) 
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The current density for a discrete set of particles is given by : 

where o0 is the surface number density in the y - z plane, N is the number of particles on a gyro radius, q i  
is the initial velocity space angle of the i-th particle measured with respect to the x axis and x(qi, t), is the x 
position on the i-th particle. In the limit as N -+ co, 

where 9, replaces cpi. In eq. (9) the velocity component v, of the i-th particle is a function of only (q,, t) since 
we assume an initially cold particle distribution in velocity. Our theory can include an initially thermal particle 
distribution, which would add an average over the initial velocities in (11). We will show later in eq. (19) that 
for an initial energy spread, dy, 4 2 yo, Aco/(Qo/y0,), the particle distribution can be considered monoenergetic 
at t = 0. The present analysis is valid when the inequality in eq. (25) is satisfied. This does not, however, prevent 
the particles from thermaliiing as the instability develops. The wave equation can be separated into equations 
for Eo(t) and a(t). By multiplying eq. (10) by sin (kn(x - a)), integrating across the waveguide from x = - a 
to x = a and operating on the resulting equation with 

,in (rn0 t' + a(tr)) 

cos (coo t' + ~(t ' ))  

we arrive at the following expressions, which are valid to order r/coo, ;loo : 

dt' < vy(qo, tr) sin (kn(x(qo, t') - a)) sin (coo tr + a(tr)) > 

E(tr) sinZ (ao t' + cr(tr)) dt' I-'] 

x sin (kn(x(qo, t') - a)) cos (ao t' + cr(tr)) > ) 
E(tr) cos2 (coo t' + a(tr)) dt' . (12') I - 

in the above equations, 

is the ensemble average over the initial particle phase. We note that the temporal averages in eqs. (12) and (12') 
are performed over the actual wave period, 2 rr/(coo + k). Eq. (12) and (12') describe the linear as well as non- 
linear evolution of the wave frequency and amplitude in terms of the particle orbits. The only restriction placed 
on T(t) and a(t, is that they vary little in a wave period, 2 n/(o0 + ;). 

The righthand side of eqs. (12) and (12') contain the details of the particle dynamics which are related to 
the fields through the relativistic orbit equations. Defining Q = 6, + iP, where 8, = v,/c and Qy = vy/c, the rela- 
tivistic orbit equation can be put into the form : 

where y, = (I - Qj?*)-1/2, Ey(x, t) = - c-' aAy/at, B,(x, t) = aAY/ax and x is given by dxldt = c(B + P*)/2. 
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We now choose the solution for eq. (13) to be of 
the form : 

P(qo, t )  = PL('P0, t) exp(idrp0, t)) (14) 

where 

PL(VO, t) = (P? + PY2>lI2 = (PB*)"~ 

and 

'P('P~, t) = f ' $(p0, t0 dtt + 'Po = tan-'(P,lPJ 

is the velocity space angle at time t. Substituting 
eq. (14) into (13) and equating real and imaginary 
parts, we obtain the following fully relativistic equa- 
tions for the velocity magnitude and velocity space 
angle 

dP1 - - I I E~ (X7  ') sin q(rpo, t) , 
dt Y: mo c 

(15) 

where y, = (1 - P:)-~/' and dxldt = cp, cos q(qO, t). 
Eq. (7), (12) and (15) form a set of coupled non- 
linear equations which describe the evolution of 
the electron cyclotron maser instability in the single 
wave model. 

In Appendix A we show that the results from linear 
theory can be recovered from these equations. The 
orbit equation in (13) when written on the slow 
time scale yields a constant of the motion which is 
discussed in Section 6. The constant is useful in form- 
ing a qualitative picture of the trapping and saturation 
process. 

The amplitude of the electric Eo(t) can be related 
to average decrease in particle energy through the 
energy conservation equation. Conservation of total 
energy within the waveguide implies that : 

where 

is the field energy density, 

E~(x,  t) = 6 0  < (~(90,  t) - 1) 8 ( X  - X(VO, t)) > m0c2 

is the particle energy density and 

Et = (oo12a) (Yo - 1) mo c2 

is the average total energy density of the system. 
Substituting E, = - C-l aA,/at and B, = aA,/ax 
into (16) where A, is given by eq. (8), and performing 
the spatial average as well as a temporal average, 
leads to the following expression for Eo(t) : 

where wb = 4 n I e l 2  oO/(mO a) is a modified plasma 
frequency and yo, is the initial gamma of the particles. 
In deriving eq. (17), terms of order higher than 
r/oo and ;loo have been neglected. Since ck,,/wo x 1 
and &'wo < 1, the expression for E,(t) can be simpli- 
fied to : 

A simple analytic expression for < yL(q0, t) > at 
saturation which will permit us to determine the 
maximum field strength through eq. (18), is derived 
in Section 6. 

Since our system of fields and particles is indepen- 
dent of the spatial variable y, we note that the y 
component of canonical momentum 

is a constant of the motion for each particle. The 
conservation of total energy as well as they component 
of canonical angular momentum is monitored throu- 
ghout the numerical simulations of eqs. (12) and (15) 
to ensure consistency. 

The nonlinear model developed in this section is 
directly applicable to the experimental situation 
in which a wave is spatially amplified in the streaming 
direction of a gyrating beam. The saturation levels 
obtained with the present model are directly related 
to the saturation levels in an amplifier when the 
axial beam velocity equals the wave group velocity. 
As pointed out in Section 3, this situation corres- 
ponds to a grazing intersection of the waveguide 
mode with the beam cyclotron mode when viewed 
on the dispersion diagram. Furthermore, such a 
grazing intersection leads to an absolute maximum 
in the temporal growth rate. In a steady state amplifier 
the input wave amplitude initially grows exponentially, 
enters the nonlinear regime and saturates. If we 
follow a group of particles contained in a thin cross- 
sectional slab of the beam, we note that the net flow 
of total eriergy flux into this slab is zero since we 
only consider the case where the axial beam velocity 
and wave group velocity are equal. Therefore, in 
the reference frame of the particles, the field amplitude 
evolves in time. This is precisely the situation des- 
cribed by our model. With the appropriate Lorentz 
transformations the saturation levels of the spatially 
amplified wave can be obtained with the present tem- 
poral model. 

5. Temperature Consideration. - In this paper 
we have considered the beam to be initially monoener- 
getic in the beam frame. The range of validity of this 
assumption requires some examination. Since refe- 
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rence will be made to quantities in both the laboratory 
and beam frames, we shall denote the former with 
unprimed variables and the latter with primes. It 
is clear that the cold beam approximation will be 
valid if the total initial spread in y; satisfies 

where < y; >, is the average value of gamma at 
saturation. In terms of efficiency, this condition 
becomes 

where n' is the beam frame efficiency defined as 

Since the unstable wave has an infinite parallel 
wavelength, in the beam frame, any spread in v;l 
is unimportant. Before considering the limitations 
on the thermal spread in vb, we will need the trans- 
formation rule for efficiency from the beam frame to 
the laboratory frame. Consider the relativistic Lorentz 
transformation of total field energy in the beam frame 
to the Iaboratory frame. Since the field momentum 
in the beam frame is zero, we have : 

where Wf and W, are the total field and particle 
energy in the laboratory frame. The power in the 
electromagnetic field can be written as : 

where Az is the axial extent of the volume element 
which contains the total field energy W,. The total 
beam energy, WL, in the beam frame can be written 
as : 

W( = yL(yb, - 1) m0 c2 A Az' , (22) 

where A = 2 r,  L is the cross sectional area of the 
beam and Az' is the axial extent of the volume element 
in the beam frame. Substituting eq. (22) into (21) 
and using the relationships 

yields the result : 

The transformation rule for efficiency is therefore 

where is the efficiency in the laboratory frame. 
To define the beam qualities necessary for the 

validity of our cold beam approximation, it is useful 
to express eq. (19) in terms of laboratory frame 
quantities. The righthand side of eq. (19) can be 

written in terms of laboratory frame quantities by 
using the transformation rule for efficiency. Using 
the results of eq. (23), the inequality in eq. (26) becomes 

where 

yo = (1 - V , ~ ~ , / C ~  - v ; , / c ~ ) - ~ / ~  . 
A spread in the beam frame gamma, Gy;,can arise 

from (a) a finite beam temperature in the laboratory 
frame or, in the case of a monoenergetic beam in the 
laboratory frame, (b) a spread in the velocity space 
angle of the particles. 

In case (a) only a temperature spread in the per- 
pendicular velocity is considered, so that 

where Av, is the thermal component of velocity. 
Only perpendicular temperature is considered since 
a parallel temperature in the laboratory frame, 
AvII, contributes a higher order correction to 6y; 
than Av, if Aull and Av, are of the same order. Since 
the perpendicular momentum is frame invariant, 
yv, = y; v;, we find that the thermal spread in 
y takes the form : 

where 

voll is the axial laboratory frame velocity and 

is the thermal spread in y; due to 

Av; = yell Av, . 

Substituting eq. (25) into (24) gives the following 
requirement for neglecting thermal effects in v, : 

In the above inequality the efficiency, y, is calculated 
using the cold beam approximation. 

In case (b) the particles have the same energy, 
however, a spread in the velocity components exists. 
Consequently, the particle velocity components in 
the laboratory frame can be written as 

v, = v,, - voll A8 ( 2 7 ~ )  

where 1 A8 J -g I is the spread of the velocity space 
angle, i. e., the angle between the total velocity vectors 
of the particles. To first order in A@, we see that 
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so that the system of particles is monoenergetic in 
the laboratory frame. The transformation rule for 
y from the laboratory to the beam frame, y' = yell y 
(1 - voll ull/c2), shows that the particles are not 
monoenergetic in the beam frame. In the beam frame 
we find that : 

71 = Y h l  + AYi, (28) 

where 

Substituting Ay; into eq. (24) gives a condition on 
the magnitude of the maximum angular spread, 

allowed in the cold beam approximation. We will 
return to conditions (26) and (29) in the next section. 

One of the causes of energy spread in an unneu- 
tralized beam is the self electrostatic field. For the 
planar beam that we have considered, the total 
spread in y; can be shown to be : 

where 

p' = o;/(yb, oh) and ob = Qo/yA, . 
Considering eq. (19), this imposes an upper limit on 
p', and hence the beam current in the laboratory 
frame. 

6. Saturation Mechanism. - In this section some 
qualitative arguments concerning the saturation of 
the electron cyclotron maser instability are presented. 
There are two mechanisms which are responsible 
for saturation of the unstable wave in the maser 
instability. There are i) depletion of the rotational free 
energy of the electrons and ii) phase trapping of 
the gyrating particles in the wave. Which of the two 
mechanisms is actually responsible for saturation 
in a particular situation depends on the initial beam 
parameters. 

Case (i) Free Energy Depletion. - As mentioned 
in Section 3, the linear dispersion relation, eq. (I), 
gives rise to a threshold condition for instability 
given by /3,, > /3,,crit. That is, the maximum free 
energy per particle available to the wave is 

&free = (YO, - Y ~ , c r i O  m0 c27 (3 1) 
where 

If the beam particles were to lose all of the free energy 
given by (32), the energy conversion efficiency would 
be 

where < Ay > = yo, - y,,crit is the average change 
in gamma at saturation and yo, 2 yl,crit. This, 
of course, is a rough approximation, since as the 
instability develops the particles warm up, while 
the threshold condition was obtained for a cold 
beam. Furthermore, as will be seen, competing pro- 
cesses such as electron trapping may take place before 
the beam loses its free energy. However, if yo, is 
slightly greater than y,,crit, the expression in eq. (31) 
will represent a good approximation to the actual 
conversion efficiency. Since, if yo, 2 yy,,cri,, the 
particles lose all their free energy before thermalizing 
or trapping takes place and the wave will be linearly 
stabilized. If, however, yo, % y,,cri,, the particles 
will phase trap in the wave and saturation will occur 
before all the free energy is used up. 

Case (ii) Phase Trapping. - The condition for 
wave saturation due to phase trapping can be viewed 
in a number of ways. First, we have noted in Section 2 
and 3 that the frequency of the wave must be slightly 
greater than the relativistic electron cyclotron fre- 
quency, SLo/y0,, for an instability to develop. Therefore, 
initially we have 

o - Qo/yo, = Ao 2 0 ,  (33) 

where Aw is the frequency shift wkich can be obtained 
from the linear dispersion relation. Now, as the ins- 
tability develops the average gamma of the particles, 
< y, >, decreases until o - Q0/ < yL > = - Aw. 
At saturation < y, > is minimum and : 

where < y, >, is the average value of y, at saturation. 
Comparing (33) with (34), we find that at saturation 
the average change in the gamma of the particles, 

is given by : 

< AY, >s = 2 YO, Ao/m . (35) 

The efficiency of conversion of kinetic energy to 
field energy, q, when electron phase trapping is res- 
ponsible for saturation, is : 

YI = 2 (Awl@) YOL~(YO, - 1). (36) 

It should be noted that the efficiency in the beam 
frame cannot be made arbitrarily close to 100 percent 
simply by increasing the frequency shift, Ao. The 
growth rate of the field is a function of A o  and is 
nonvanishing for a limited range of Aw. The relations 
in (35) and (36) are valid only if Ao lies within the 
nonvanishing part of the growth rate spectrum. To 
find the actual amplitude of the field at saturation, 
Eo ,,, we use the expression for conservation of total 
energy given in eq. (18). The maximum field amplitude 
at saturation is easily shown to be : 
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where it has been assumed that ;loo & 1 and 
ck,/o, x 1. 

Constant of Motion. - We now examine the non- 
linear behavior of the particles with the aid of a 
constant of the motion derived from the orbit equa- 
tions. 

The orbit equations given in eq. (15) can be written, 
in the small Larmor radius approximation, x 6 a, 
as : 

where u, = y, p, is proportional to the transverse 
particle momentum, and 

y, = (1 + u;)''~ . 
The field amplitude, E,, as well as the frequency, 
o, + Am, are considered fixed and o, = Qo/yo, 
is the initial electron cyclotron frequency. The particle 
momentum, u, m, c, and time rate of change of the 
velocity space angle, dqldt, consist of fast and slow 
time scale variations. 

The fast time scale variation is associated with 
the wave frequency or electron cyclotron frequency, 
while the slow time scale is associated with the fre- 
quency shift, A o .  The nonlinear behavior is governed 
predominantly by the slowly varying parts of u, 
and dq/dt. Since (o, + Am) - dpldt changes slowly 
the orbit equations in (38) written on the slow time 
scale become 

-- d", - lelE, sin (1) 
dt 2 nz, c 

d A 
dt 

I I E0 cos (A) (39b) - = (oO + Am) - - + 
7, 2 1710 CU, 

where L = (o, + Ao) t - p(t) - 9,. These slow 
time scale orbit equations have the following constant 
of motion : 

c = --- I I E0 u,(t) cos (A(t)) + (o, + Am) x 
mo c 

Each particle moves in phase space, (u,, A), on 
C = constant curves. These C = constant curves des- 
cribe the particle orbits when a constant frequency 
and constant amplitude field 1s instantaneously 
switched on. This situation can be realized by injecting 
particles into a field filled cavity. The particle trajecto- 
ries in phase space lie on the constant Ccurves depicted 
in figure 7. The initial conditions for the example 

O 4  - BOUNDARY 
-J 

BOUNDARY 

0 1 

FIG. 7. - Particle trajectories in velocity phase space as 
found from the constant of the motion. The figure shows the 
boundaries of the regions accessible to particles initially uni- 

formly distributed between 0 6 1 < 2 n with u l  = u o h  

shown in the figure 7 are yo, = 1.05, p = 0.05, 
Aolm, = 0.018 and I e I E,/(y,, a,, m, c) = 0.002 5. 
In this illustration the frequency shift is consistent 
with linear theory and the field amplitude, E,, corres- 
ponds to roughly a quarter of the value at saturation. 

In figure 7 the particles are initially uniformly 
distributed between 0 < A < 2 n with u, = u,,. The 
trajectory followed by a particle is determined by 
its particular value of C which is different for each 
particle. The particles have access to a limited region 
of phase space, the boundaries of which are shown 
in figure 7. Particles which initially lie on closed 
C = constant curves are considered trapped even 
though u, as a function of 1 is single valued. However, 
as the particles travel along their C = constant 
curve, u, will eventually become a multivalued func- 
tion of A. Similarly, for a growing field amplitude 
particles can be considered trapped if they lie on 
closed C = constant curves, long before u, becomes 
a multivalued function of A. The character of the 
accessible C = constant curves is determined, among 
other things, by the value chosen for E,. For suffi- 
ciently small values of E, the particles will not lie 
on closed C = constant curves and, hence, are not 
trapped. The value of E, for which the first closed 
C = constant curve intersects the u, = u,,, line 
determines the field amplitude necessary for the 
onset of trapping. The separatix separating the 
closed and open orbits first intersects the line u, = u,, 
at 1 = n. As larger values of E, are chosen, the 
inaccessible interior region of phase space will con- 
tract and approach the point u, = u,, and A = n. 
At the value of E, for which the inaccessible interior 
region vanishes, the average particle energy ceases 
to decrease. The value of electric field amplitude 
necessary for the disappearance of the interior region 
is 

nt, cm, A o  
Eo x 2 ----- 

lei UOI - 
00 
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FIG. 8. - The deformation of a monoenergetic beam in the 
presence of a constant amplitude fieid showing the actual particle 
positions in phase space. The curve for t = to indicates the 
initial positions and the one for t = t l  the positions when the 

beam indicates trapping. 

FIG. 9. - The particle positions in phase space for a mono- 
energetic beam deformed by a constant amplitude electric 
field at t = t z  when the particles have lost the maximum energy 

and are in a state corresponding to saturation. 

In figures 8 and 9 the actual positions of the par- 
ticles in phase space are shown at various times. The 
parameters used for these figures are the same as 
those used in figure 7. Superimposed on the curves 
in figures 8 and 9 are the boundaries of the accessible 
region of the C = constant curves. At t = 0, when the 
electric field is switched on, the particles are uniformly 
distributed along the u, = u,, line between 
0 < I < 2 n. In the constant amplitude electric 
field the particles proceed to bunch and rotate about 
the interior boundary as shown in the figures. At 
t = t, the particles begin to overtake each other 
and bunch along the righthand side of the interior 
boundary. At a still later time, t = t,, the particles 
rotate and bunch along the bottom of the interior 
region. At this point the configuration corresponds 
to the saturation state since the average particle 
energy is at a minimum. The average kinetic energy 
continues to oscillate as the particles rotate about 
the interior boundary in a clockwise direction. The 
distribution functions, f,(u,), corresponding to the 

phase space trajectories in figures 8 and 9 are shown 
in figure 10. As can be seen from Figures not all 
the particles are located at the bottom of the interior 
boundary at saturation. Consequently, the average 
of u, at saturation is not exactly given by u, at the 
bottom of the interior region. 

FIG. 10. - The distribution functions of the electron beam 
deformed by a constant amplitude electric field at 

t = to, t l ,  t 2 .  

For sufficiently small values of E, the accessible 
C = constant curves are open and particles are not 
trapped. As E, is increased, the first particle to 
become trapped is always the one initially located 
at (uO,, n). Trapping begins when the particle at 
(u,,, n) has a closed orbit with turning points at 
I = 2 z and 0. At these turning points, dA/dt vanishes. 
Since the constant C is invariant along this closed 
orbit and dlldt vanishes at I = 2 n and 0, we can 
obtain the threshold value of Eo for trapping from 
eqs. (39b) and (40). The approximate value of the 
field amplitude for the onset of trapping is given by : 

Using the constant of the motion in eq. (40), the mini- 
mum value of u, reached by the first trapped particle 
occurs at 1 = n and is approximately : 
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The corresponding minimum gamma for this particle 
is y ,,,, = yo, - 2 yo,  Aoo/w,. Consequently, the 
first trapped particle undergoes a change in gamma at 
A = 7~ given by : 

AYL = 2 Yo, Aoolwo (44) 

This expression for the maximum change in gamma 
allows us to estimate the field amplitude at saturation 
as was done in eq. (37). The change in gamma in 
eq. (44) is identical to the value found in eq. (35), 
where a different line of reasoning was used. 

7. Results. - The nonlinear coupled equations (12) 
and (15) are solved numerically for a wide range of 
parameters. In each case the distribution function 
was represented by approximately 40 to 100 test 
particles. The actual number of particles used was 
determined by performing runs with larger and larger 
numbers of particles until no discernible difference 
appeared in the results. The conservation of both 
total system energy and canonical y-momentum was 
monitored. The integration timesteps were adjusted 
to maintain the conservation of both constants to 
within 0.5 % over the duration of a run. As diagnostic 
aids, plots of the test particle velocity distribution 
function, velocity space and phase space were made 
at various times during the runs. 

A run was initiated by uniformly distributing the 
particles in the velocity space angle, 0 < (o, < 2 n 
and assigning them the same perpendicular velocity, 
u, = v,,. A small amplitude electric field was intro- 
duced as a perturbation and allowed to grow self 
consistently. From the results of the single wave simu- 
lation runs we have made composite graphs of the 
transfer efficiency from particle kinetic energy to 
wave electromagnetic energy at saturation as a func- 
tion of several parameters. A comparison between 
these results and the analytic predictions in Section 6 
shows good qualitative agreement. 

We will now discuss the phase space dynamics 
for the two saturation mechanisms discussed in 
Section 6.  The evolution of the particles in phase 
space and their distribution functions is shown when 
saturation occurs by (i) free energy depletion and (ii) 
phase trapping. In the free energy depletion case the 
initial parameters are 

where p is a dimensionless parameter related to the 
beam density through 

and I = n = 1. Figures l l a  and l l b  show the particle 
phase space in the course of the instability when the 
growth is still linear. At saturation, shown in figure 1 lc, 
the particles indicate no phase trapping. The average 
particle y, at saturation is within a few percent of 
yLScri,. However, the individual particles energies 

FIG. 11. - The particle positions in phase space from a 
simulation of the cyclotron maser instability in the case of 
saturation by energy depletion, (a) t = tl  linear phase, (6) t = t z  

nonlinear phase, and (c)  t = t ,  at saturation. 

have a large variation, as can be seen from the distri- 
bution functions depicted in figures 12b and 12c. 
The predicted efficiency according to eq. (32) is 
q = ( y O L  - yl,crit)/(yOI - 1) NN 10 %. This is in excel- 
lent agreement with the numerically evaluated effi- 
ciency of 10 %. To illustrate case (ii), where phase 
space trapping is responsible for saturation, we 
choose the parameters yo ,  = 1.2, p = 0.05. (Note 
that yL,,,it = 1.01 for this case as in case (i).) The 
particle dynamics in velocity phase space and the 
velocity distribution function are shown at various 
times -c during the evolution of the run in figures 13 
and 14. In figure 13a the particles are shown at 
z = 250 when they have begun to display some 
bunching but are relatively close to their initial phase 
space positions. The corresponding distribution func- 
tion in figure 14a displays little spread in velocity. 
When the nonlinear effects manifest themselves by 
a change in the growth rate, the velocity phase space 
bunching becomes distinctly visible and the velocity 
distribution begins to spread as shown in figures 13b 
and 14b. In figures 13c and 14c we show the velocity 
phase space and distribution function at saturation. 
The phase space plots in figures 13b and 13c show the 
trapped electrons circulating and forming a tongue 
configuration, similar to the one in figures 8 and 9, 
where a constant electric field was present. The satu- 
ration mechanism for this case is clearly phase trapp- 
ing of the beam electrons in the wave. Because not 
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fe(D-1) fe(fi1) 

FIG. 12. - The distribution function of the electrons from FIG. 14. - The distribution function for saturation by trapping 
a case of saturation by energy depletion at various times as for times given in figure 12. 

in Figure 10. 

SATURATION . .... 

FIG. 13. - Particle positions in phase space from a simulation 
in the case of saturation by trapping, (a) linear phase, (6) non- 

linear phase, and (c) at saturation. 

all the electrons are trapped, an average over thedis- 
tribution function is necessary to determine < y, >,. 
This necessitates the introduction of a numerical 
factor, f in the simple expression corresponding 
to eq. (35) 

< A Y I  > s / ~ o *  = 2 f  A o l o o  . 
The factor f is a number on the order of unity and 
depends on the fraction of deeply trapped particles, 
fSl. 

As an example of a typical run, we shall follow 
the evolution of field and particle quantities as a 
function of time. The initial conditions chosen for 
this example are : 
p = 0.05, yo, = 1.05, coo = ck, = 62,/y0, and 

n = 1, and p = mh/( Jz ma). In figure 15, the 
nonlinear frequency shift and growth rate are shown 
as functions of the normalized time parameter 
z = oo t. Initially for z 5 150 when the field ampli- 
tude is small, we see a transient, during which the 
perturbing field comes into equilibrium with the 
particles. That is, initially the presence of the small 
amplitude electric field is inconsistent with the initial 
conditions of the beam particles. During the early 
transient the field and particles adjust themselves 
to self consistently satisfy eqs. (12) and (15). The 
transient regime lasts for a time roughly given by 
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FIG. 15. - The nonlinear phase shift and growth rate as a 
function of time for a typical simulation. 

z ,,,, NN coO/rL. The linear regime, 150 5 z 5 350, 
follows the initial transient. In this regime the wave 
grows exponentially and both the growth rate and 
frequency shift assume the values predicted by linear 
theory. As will be apparent from one of our later 
figures, the growth rates and frequency shifts in the 
linear regime are in excellent agreement with those 
found from the linear dispersion relation. The expo- 
nentially growing wave attains a sufficiently high 
amplitude by z = 350 to start nonlinearly affecting 
the particle dynamics and the growth rate begins to 
decrease until it reaches zero at z x 420 when satu- 
ration occurs. 

The nonlinear change in the growth rate is accom- 
panied by a less pronounced change in the frequency 
shift prior to saturation. We find that for the para- 
meters used in this example at saturation 

We have found that the energy efficiency curves 
for a given set of parameters always display a maxi- 
mum. For example, with p = 0.1, the efficiency 
curve shown in figure 16 has a peak of 40 % when 
yo,  = 1.1. The peak results from the competition 
between the two saturation mechanisms described 
in Section 6. As can be seen in figure 17 the efficiency 
curve has a cutoff at y ,  = y ,,,, = 1.018 5. The 
curves of the linear growth rates and frequency shifts, 
obtained by numerically solving the linear dispersion 
relation of eq. (1) are shown in figure 18 as a function 
of yo,. The linear growth rate curve shows a threshold 

' O I - ~ L .  crlt'\, - 50- , ' / ' 1 = y  
01-1 ' 

r Eq (341 
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FIG. 17. - The efficiency of the cyclotron maser as a function 
of energy found from the two mechanisms of saturation and 

from simulations. 

in good agreement with the qualitative argument in 
Section 6. The normalized field amplitude, 

& O ( 4  = I e l E o ( z ) l ( m o  two) > 

and the average perpendicular particle energy < y, > 
are shown as functions of z in figure 16. 

FIG. 18. - A comparison of the growth rate and phase shift 
predicted by linear theory and the results from the linear por- 

tions of the computer simulations. 

FIG. 16. - The field amplitude and average beam y as a func- 
tion of time for a typical simulation. 

at yo,  = 1.018 5, identical to that in figure 18. Figure 
18 also shows a comparison between the results of 
linear theory, eq. (I), and of the particle simulations 
in the linear regime. Clearly, the linear growth rates 
and frequency shifts are in excellent agreement. For 
beams that have initial energies characterized by 
yo,  2 Y ~ , ~ , ~ , ,  we find that the excited wave extracts 
free energy from the beam until < y ,  > = y,,,,i, 
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and the system becomes linearly stable without par- 
ticle trapping taking place. The simulatjons confirm 
this, since the velocity phase space plots show no 
evidence of trapping at the time of saturation when 
yo, 2 Y,,~,~, .  In this regime a rough expression for 
the average change in y ,  at saturation is 

and implies an efficiency monotomically increasing 
with yo, ; this is shown as a dashed curve on figure 17. 
In the other regime where yo, 9 yL,c,it the saturation 
mechanism is dominated by particle trapping and we 
find that < A y ,  >, = 2 f yo,  Ao/wo. This implies an 
efficiency curve monotomically decreasing with yo, 
as shown in figure 17 with f = 1. The two saturation 
mechanisms described here predict an efficiency 
maximum : this is also verified by the results of the 
particle simulations. 

Our saturation arguments show qualitative agree- 
ment with the actual efficiency obtained numerically. 
In the yo, 9 y,,,,;, regime we have arbitrarily set 
f = 1, implying that all the particles are deeply 
trapped at saturation. From figure 17 we see that in 
the intermediate regime f is closer to 1/2. Similar 
arguments hold in the yo, 2 yL,,,it regime. The 
dashed curves in figure 17 show the competition bet- 
ween two mechanisms leading to a maximum in 
the efficiency curves. 

We now present the results of our nonlinear ana- 
lysis for a wide range of parameters. In figure 19, 
energy efficiency as a function of yo, is shown for 
various values of p, p = 0.025, 0.05, 0.15 and 0.35. 

creases at low values of yo, as p is decreased. This 
property of the curves can be explained by noting 
that as p decreases, yLScIi ,  decreases, resulting in a 
sharp increase in efficiency as a function of yo,  near 
yLScri t .  The maximum efficiency seems to level off 
at - 40 % for low values of yo,, when 

Dramatic increases in the efficiency can be realized 
in a number of ways. For example, by slightly mistun- 
ing the relativistic cyclotron frequency away from 
w0 = ck,, electron phase trapping can be postponed 
and higher efficiencies realized. In the regime where 
electron trapping is responsible for saturation, we 
have shown that the efficiency is roughly 

By choosing oo > Qo/yo,, we can expect the efficiency 
to increase. In figure 20 the efficiency is shown as a 
function of (S20/yo,)/oo for various values of p and 
yo,. The values for p and yo,  were taken from the 
maximum efficiency points in figure 19. Figure 20 
shows clearly that higher efficiencies can be realized 
for (Qo/yo,)/w0 less than unity. Since sufficiently 

FIG. 19. - The beam frame efficiency of the electron cyclotron 
maser as a function of energy for various densities when 

ckn = Q O ~ Y O L .  

In this figure the initial wave frequency o, was set 
equal to ck, with n = 1. Furthermore, the initial 
relativistic cyclotron frequency, Qo/y0,  was set equal 
to ck,. These initial conditions on oO, ck, and Q,/yo, 
were selected because they occur near the maximum 
linear growth rate. All of the curves in figure 19 
display a maximum in efficiency in the beam frame 
as a function yo,. This characteristic of the curves 
has already been explained. A further feature of the 
curves is that as p increases, yo,crit increases in agree- 
ment with the definition of P,,cIi, given in Section 3. 
From figure 19 we also note that the efficiency in- 

FIG. 20. - The beam frame efficiency of the electron cyclotron 
maser when the cyclotron frequency is varied. 

small values of (Qo/yo,) /oo lie outside the growth 
rate spectrum, the efficiency drops to zero. By mistun- 
ing the magnetic field, the efficiency was increased 
from 40 % to 63 % in the beam frame for the case 
p = 0.1 and yo,  = 1.155. 

The efficiency can also be increased by varying 
the external magnetic field in time in such a way that 
w - L?,(-c>/ < y,(z) > is held fixed. This procedure is 
similar to the mistuning approach discussed, in that 
electron phase trapping is postponed. Choosing 
p = 0.1, yoL = 1.1 and changing the magnetic field 
in time such that (w - O o ( z ) / <  y,(z) >) is fixed 
at its initial value of 0.034, an efficiency of w 70 % 
was realized. This compares with an efficiency of 
w 40 % when the magnetic field was held fixed at 
iZo/yo,  = oo = ck,. 

8. Experimental Examples. - The theory presented 
above is most directly applicable to a gyrotron in 
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the form of a travelling wave amplifier (gyro-TWT). 
In such an amplifier the drift tube containing the 
magnetized, spiralling, electron beam serves as a 
simple r. f. structure (a waveguide) into which an 
e. m. wave may be introduced. To optimize energy 
transfer from the beam to the wave both group velo- 
city and phase velocity of the wave are nearly matched 
to the group and phase velocity of the beam fast 
cyclotron wave. This is equivalent to having the wave 
frequency nearly equal to both the mode cutoff 
frequency and to the electron cyclotron frequency 
in the beam frame (vbll = 0). 

A linear gyro-TWT amplifier was first realized [27] 
by launching a TE,, wave into a cylindrical drift 
tube containing an intense relativistic electron beam. 
The amplifier was operated in the linear regime exhibit- 
ing a power gain of 16 dB (1 dB/cm) for a total power 
output of 4 MW at 8.6 GHz. The observed gain agreed 
well with the predictions of the linear theory as d ~ d  
other features of the experimental data such as reso- 
nant magnetic field and width of the magnetic reso- 
nance. The amplifier had a bandwidth of -- 5 % 
and appeared to be magnetically tunable over a 
very wide range in frequency (- octave). However, 
the nonlinear operation of the amplifier was not 
examined because the power of the input source 
(- 100 kW) was so much smaller than the beam 
power (- 5 GW). 

The nonlinear theory has recently been applied [28] 
to the detailed design of a highly efficient saturated 
gyro-TWT amplifier working with an electron beam 
of more modest power level. To improve the accuracy 
of the calculation, the theory was adapted to cylin- 
drical geometry. Rather than using an intense rela- 
tivistic electron beam generator with its short single 
pulse operation (z - 50 ns), it was decided to use a 
magnetron injection gun with thermionic cathode 
such as used in the gyrotron experiments at the 
Gorkii State University [ l l ,  121. Such a choice makes 

long pulse operation possible, and opens the way 
for application of the device to r. f. heating of plasmas. 

As in the linear intense beam experiment, an opera- 
tion of the nonlinear amplifier was chosen to be in 
the TE,, mode and at the fundamental electron 
cyclotron frequency. Power output of the gyrotron 
was chosen to be several hundred kilowatts at 
f e 35 GHz to match the parameters of an easily 
accessible research Tokamak [29] on which electron 

TABLE I 

Design Parameters of Optimized Gyro TWT 

A. Lab Frame Parameters 
m0/2 TC = 35 GHz 
V = 71 kV 
I = 9.5 A 
fl = 51 % 
Po = yVI = 340 kW 
" o l l v o l l  = 1.5 
Bo = 12.9 kG 
drift tube radius r, = 5.37 mm 
beam guiding center radius r, = 2.52 mm* 
linear power gain = 2.0 dB/cm 

B. Beam Frame Parameters 

(*) rt, was chosen to correspond to radius of E field maximum 
in TEol mode. 

,-=" ' PUMP 

FIG. 21. - Schematic of Gyro-Travelling Wave Amplifier. 
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cyclotron resonance heating (ECRH) experiment 
will be carried out. 

In order to proceed with a design optimized for 
maximum efficiency, one needs to specify the velocity 
ratio vo,/uoll in addition to the output power, Po, 
and frequency, wo. A large value of vol/voll would 
seem desirable since only the transverse component 
of energy is converted to e. m. radiation in the cyclo- 
tron maser instability. However, if uo,/uol, is too large 
an excessive build-up of space charge would result 
and complicate the operation of the amplifier. We 
have chosen vo,/uoll = 1.5. 

Having chosen vOf /vo l l  and w,, beam frame para- 
meters such as @', yol, and y' can be related to cur- 
rent, voltage and efficiency in the laboratory frame. 
Then using sets of beam-frame characteristics curves 
such as those in figures 19 and 20, parameters can be 
determined which maximize efficiency at the desired 
value of output power. 

An optimized set of parameters for the desired 
35 GHz gyro-TWT is presented in table I. The ampli- 
fier is sketched in figure 21. The configuration of 

electrodes in the gun the applied voltages and the 
magnetic field contour were chosen to yield the design 
values of I, r,, and vol/voll while minimizing the 
velocity spread. A numerical gun simulation, includ- 
ing space charge effects, traced electron trajectories, 
and determined that for the gun design shown in 
figure 21, the spread in transverse velocity is 3.5 % 
while the spread in streaming velocity is 6.8 %. 
The spread in energy was 0.2 %. These values are 
sufficiently small to strongly satisfy the energy spread 
condition derived above in Section 5. 

The gyro-TWT shown in figure 21 is presently 
being fabricated along with a gyromonotron single 
cavity oscillator which will use the same electron 
gun and solenoid system. It is hoped to employ 
these gyrotrons in ECRH studies within the year. 
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