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SOLITONS, ENVELOPE SOLITONS IN COLLISIONLESS PLASMAS 
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and 
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RQum6. - On prksente une revue des approfondissements theoriques, numeriques et expe- 
rimentaux sur la propagation d'onde non lineaire dans les plasmas sans collision. Premitrement, 
I'expc5rience historique de Ikezi et al. est discutee et comparee A une analyse theorique bas& sur 
IVquation de Korteweg-de Vries. Un ecart systkmatique entre I'observation et la prevision theo- 
rique suggere qu'on doit examiner des effets tels que couplage de mode d'ordre plus eleve, et 
contribution des particules piegees. Deuxitmement, les effets de I'amortissement de Landau non 
lineaire sur le soliton d'enveloppe d'onde plasma ionique sont discutQ sur les bases de 1'Ctude thto- 
rique de Ichikawa-Taniuti, de l'observation experimentale de Watanabe et de l'analyse numerique 
de Yajima et a / .  Finalement, un type nouveau d'equation d'kvolution compose pour I'onde d'AlfvCen 
est examine en quelque detail. La solution rigoureuse obtenue pour ce mode represente un nouveau 
type de soliton d'enveloppe pour lequel A la fois la phase et I'amplitude sont sujettes a des modu 
lations d'extensions spatiales comparables. En conclusion, I'accent sera mis sur le fait que beaucoup 
plus de recherches experimentaies intensives sont attendues, puisque les methodes puissantes 
pour dCmCler des equations d'evolution non linkaires variees sont maintenant disponibles a I'appro- 
che thkorique. 

Abstract. - A review is given to extensive development of theoretical, computational and expe- 
rimental studies of nonlinear wave propagation in collisionless plasmas. Firstly, the historical 
experiment of Ikezi et a/. is discussed in comparison with theoretical analysis based on the Korteweg- 
de Vries equation. Systematic discrepancy between the observation and the theoretical prediction 
suggests that it is necessary to examine such as higher order mode coupling effect and contribution 
of trapped particles. Secondly, effects of the nonlinear Landau damping on the envelope soliton 
of ion plasma wave is discussed on the basis of theoretical study of Ichikawa-Taniuti, experimental 
observation of Watanabe and numerical analysis of Yajin~a et al. Finally, a new type of evolution 
equation derived for the Alfven wave is examined in some detail. The rigorous solution obtained 
for this mode represents a new kind of envelope soliton, in which both of its phase and amplitude 
are subject to modulation of comparable spatial extension. In conclusion, the emphasis will be 
placed on the fact that much more intensive experimental researches are expected to be done, 
since the powerful methods to disentangle various nonlinear evolution equations are now available 
for theoretical approach. 

1. Introduction. - Studies of nonlinear wave 
phenomena in collisionless plasmas provide a firm 
base not only for exploring fundamental researches 
on  nonlinear physics, but also for developing prac- 
tical applications in controlled nuclear fusion techno- 
logy. Problems of laser-plasma interaction, anoma- 
lous transport and radio-frequency confinement are 
typical examples having strong motivation in the 
latter connection. In this paper, however, we will 
put our emphasis on the fact that recent advancement 
in understanding of nonlinear wave phenomena opens 
the way to  establish physics of nonlinear phenomena 
in nature. 

In the month of August 1843, Scott-Russel [ I ]  
had the first chance to observe a rounded, smooth 

and well defined heap of water continued its course 
along the channel appearently without change of 
form o r  diminution of speed. This solitary wave 
propagated about one miles a t  a rate of some eight 
or nine miles an  hour, preserving its original figure 
some thirty feet long and a foot to  a foot and a half 
in height. In 1895, analyzing competing process of 
dispersive effect and nonlinear steepning effect in the 
shallow water wave propagation, Korteweg and de 
Vries [2] have derived a nonlinear partial differential 
equation to  explain the properties of the solitary 
wave. This equation is now called by their names. 

Since Gardner and Morikawa [3] have rediscovered 
that the Korteweg-de Vries equation valids also for 
nonlinear magneto-hydrodynamic wave propagating 
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perpendicular to the external magnetic field, refreshed 
interests have been stirred up on the studies of non- 
linear wave phenomena in the field of plasma physics. 
Theoretical prediction of Washimi and Taniuti [4] 
on the possibility of the ion-acoustic solitary wave 
has been confirmed experimentally by Ikezi, Taylor 
and Baker [S], [6]. Reinforcement of the genius 
invention of the inverse scattering method of solving 
nonlinear evolution equations [7], [8] has encouraged 
us to endeavor to disentangle complicated nonlinear 
wave phenomena on the firm theoretical ground. 

We begin our discussion on the historical experi- 
ment of Ikezi et ul. [ 5 ] ,  [6] on the ion-acoustic soliton 
in section 2, and then proceed to discuss recent theo- 
retical development on the properties of solitons asso- 
ciated with the weakly dispersive system in section 3. 
In section 4, we discuss theoretical and experimen- 
tal aspects of the nonlinear wave modulation in the 
strongly dispersive region. We present in section 5 
a new type of evolution equation derived for the 
Alfven wave, propagating along the magnetic field, 
and discuss its analytic steady state solution in some 
details. As concluding remarks, we mention briefly 
potential importance of the studies of nonlinear 
wave phenomena on understanding of behaviour 
of plasmas which are expected to be produced in 
controlled thermonuclear fusion devices. 

2. Ion-acoustic solitons. - Firstly, let us derive 
the Korteweg-de Vries equation for the ion-acoustic 
wave on the basis of the reductive perturbation 
theory developed by Taniuti and his collaborators 
during the years of 1968 - 1974 [9]. For a collision- 
less plasma composed by cold ions and warm elec- 
trons, the basic set of equations may be expressed 
as (in a dimensionless form), 

n, = exp $ ( 1 4  

where 

and 

are the dimensionless ion number density, electron 
number density, ion velocity and electro-static poten- 
tial, respectively. Dimensionless space-time variable 
(x, t )  are measured by the Debye distance 

and the ion plasma frequency (4 ne2 ~ Z ~ / M ) ' / ~ .  
Needless to say, we are considering one dimensio- 
nal wave motion in the system. 

Imposing the boundary condition, 

n = l  $ = O ,  u = 1  as I x l + m ,  (2) 

we introduce the stretched variables 

5 = e1/2(x - t) , (34 
7 = E3I2 (3b) 

With these re-scaling of the independent variables, 
the basic eq. (la) - (Id) are transformed as follows, 

a  a a a E-u - - n  + u - u  = - ;-$ (46) ax a t  a t  05 

Substituting power series expansions of n, u and (I/, 

n = 1 + E n(') + e2 d2) + ... ( 5 4  

u = E + E2 ~ ( 2 )  + ... (56) 

$ = &$(l' + E2 ( I / ( 2 )  + ... (Sc) 

inot eqs (4a) - (4c), we can establish relationship 
among the first order quantities as 

$ ( I )  = ,1(1) = (1) = (1) U ne , (6) 

in the lowest order expansion of eqs (4a) - (4b). 
Their explicit (5, 7)-dependence is determined through 
the Korteweg-de-Vries equation 

which is derived as the compatibility condition of the 
second order components of eqs (4a) - (4c). 

Although the Korteweg-de Vries equation can be 
solved analytically for an arbitrary initial value with 
the help of the inverse scattering method, here we 
present a steady state one-soliton solution of (7) as 

(I/ = A sech2 [D(5 - 1 T)] , (8) 

with 

Namely, the one soliton runs with velocity faster 
than the ion acoustic speed by the amount propor- 
tional to one third of its amplitude. The width of 
soliton is inversely proportional to the square root 
of its amplitude. Figure 1 illustrates nonlinear evolu- 
tion of the large amplitude perturbation excited in 
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FIG. 1 .  - Propagation of nonlinear ion-acoustic wave. The 
top trace is an applied pulse. The lower traces represent sub- 
sequent decomposition of the induced perturbation into a 
precursor (indicated by arrows) and solitons at the distances 

indicated on the right. 

the double plasma device, having the following 
parameters no = (1 -- 2) x 10' ~ m - ~ ,  T, = 2 - 3 eV, 
T , /Ti -10  in low pressure Argon gas with 
(2 -- 5) x torr in typical operation conditions. 
The large amplitude perturbation is decomposed into 
several peaks in the course of its propagation. The 
first small peak is a precursor consisted with ions 
reflected back from the large potential barrier, of 
which properties have been examined theoretically 
by Kato et a/. [lo]. 

We may summarize the experimental results as 
follows : 

1 )  The velocity of the soliton is approximately in 
accord with the theoretical value predicted by (9a) 
but the observed velocity is faster than the velocity 
of the Korteweg-de Vries soliton, [S], [6], [l I]. 

2) The width of the soliton is in rough agreement 
with the theoretical value of (9b), but it is narrower 
than the width of the Korteweg-de Vries soliton, [S], 
[61, [Ill .  

3) The number of solitons is in agreement with the 
value predicted by the analytic solution given by the 
inverse scattering method, [I I]. 

4) The recurrence to its initial form of perturbation 
has been demonstrated [6], [12]. 

Systematic discrepancy between the experimental 
observation and the theoretical prediction calls for 
refinement of simplified Korteweg-de Vries soliton 
description. As an improvement of the model, effects 
of finite ion temperature have been examined by 
Kato et al. [ I  01, Tappert [13] and Tagare [14]. With 
regards the large amplitude effects, Schamel [15] 
has proposed a different type of the nonlinear equation 
with full account of the trapped particles by electro- 
static potential of the wave, while Konno and Ichi- 
kawa [16] have shown that contribution of three- 
wave interaction, with account of the finite ion tem- 
perature effect, removes the discrepancy between the 
theory and experiment considerably (Fig. 2). We 
should, however, emphasize that none of these can 
discriminate the others, conclusively. Experimental 
investigation for various electron-ion temperature 
ratio will be useful to draw definite conclusions. 

density perturbation Sn/n, 

FIG. 2. - The soliton velocity as a function of amplitude 
of the density perturbation Gnlno. The bars are experimental 
results taken from the reference [5]. The broken line with dots 
is for the Korteweg-de-Vrics soliton. The dotted lines are curves. 
Calculated for the reference 1151 with arbitrary parameter of 
B = TelTn, where Tt is temperature of trapped electrons. The 

heavy curves are results of the reference [16]. 

3. Higher order perturbation and dressed soliton. - 
Besides the above mentioned refinements from the 
physical consideration, we may ask how contributions 
of higher order perturbation terms modify basic 
properties of the Korteweg-de Vries soliton within 
the mathematical framework of the model system 
described by eqs. (la) - (ld). We have undertaken 
the analysis of higher order terms of eqs. (4a) (4c) 
[17]. The second order quantities n(') and d2)  are 
expressed as 

while behaviour of the second order potential 
is determined from the following equation, 

where 

Thus, the Korteweg-de Vries eq. (7) and the linear 
inhomogeneous eq. (1 la) with (I 1 b) describe non- 
linear ion acoustic wave propagation in the second 
order. 

Seeking a type of solutions I ) ( ' )  (q )  and $ ( 2 )  (q) 
with argument 

'1 = 5 -1.7,  (12) 

we have obtained a steady one soliton solution of the 
coupled set of eqs. (7) and (I 1 a) with (1 lb) as follows, 
letting ordering parameter E + 1, 

3 
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11/")(q) = 3 1 sech2 (Dq) , (13b) 

9 
$"'(q) = - 2 sech2 (Dq) x 

4 

x ( 2 Dq tanh (Dq) - 8 + 7 sech2 (Dq) ) , 
(13~) 

with 

D = ( ~ / 2 ) " ~  . (1 3 4  

The perturbed potential $(q) can be regarded as the 
dressed soliton, of which velocity I is given by the 
amplitude A of the ion acoustic potential perturbation 
as 

We have observed numerically that the steady state 
clouds (13c) moves stably with the Korteweg-de 
Vries soliton core (13b). 

We have also examined numerically the collision 
processes of the dressed solitons 1181. As a solution 
of the Korteweg-de Vries eq. (7), we take the well- 
known two-soliton solution, 

+ ~1 exp(2 Dl 111 + 4 D2 11, + a,)] , 
where 

t l 1 = 5 - 1 1 7 - 6 , ~  (164 

The parameters 6, and 6, denote initial positions 
of the two solitons. We describe an initial state of the 
binary system of the dressed solitons approximately 
by superposing the steady state second order clouds 
(13c) with the amplitude given by A ,  and I, at the 
positions of 6, and 62, respectively. Figure 3 presents 
the temporal evolution of the shape of two dressed 
solitons with the values of 6, = 0.3 and 62 = 0.24. 
The thin line represents the Korteweg-de Vries 
soliton core, while the broken line at time z = 0 
represents the steady state second order clouds asso- 

FIG. 3. - Collision process of two dressed solitons with 
dl  = 0.3 and 122 = 0.24, represented by the heavy lines. The 
thin lines indicate the Korteweg-de Vries soliton cores, while the 

dotted lines represent the second order clouds. 

ciated with each soliton core. In the course of collision 
process, we observe that the clouds associated with 
the binary soliton core redistribute themselves in such 
a way to equalize their amplitude after the collision. 

Concerning with the structure of the dressed soliton, 
Sugimoto and Kakutani [19] have remarked that the 
term with Dq tanh (Dv) implies the fact that the 
reductive perturbation expansion carried up to the 
second order is not free from the secularity. They 
have proposed to eliminate this term by the method 
of multiple space-time variables. Introducing the 
following multiple space-time variables. 

they have obtained the following equation for the 
place of (1 1 a), 

where S($(')) is given by (llb). As for the steady 
one soliton solution of eqs. (lla) and (18), taking a 
form of 

where q is given by (12), and D is defined by (13d), 
they have obtained the following set of equations, 

as conditions to eliminate the secular term. Hence, 
slow variation of the phase O(z2, 5,) is given by 



SOLITONS, ENVELOPE SOLITONS IN COLLISIONLESS PLASMAS C6-19 

were D = (A/2)'/' is a constant. Solving $('' from 
(18) with (19) and (21), one can easily write down the 
perturbed potential up to the second order terms as 

9 
j(1) = 3 A sech2 (Ed + sech' (51) x 

x [- 8 + 7 sech2 (&)I , (22) 

with the definition of 

It should be noticed here that the velocity of soliton 
;1 is given by (14) expressed in terms of the maximum 
soliton amplitude A as before, but structure of the 
renormalized soliton is now given as 

A) sech' (h) , 

- 9 
Il/Cl(q) = - 7 - A 2  sech ' (&) tanh2 (61) , (24~)  4 

where qc0(?) is the second orther renormalized soliton 
core, and qc1(v) represents the second order cloud 
surrounding the core. In figure 4, we illustrate the 
structure of the renormalized soliton. 

FIG. 4. - Structure of renormali~ed dressed soliton. The 
heavy line represents shape of eq. ( 2 4 4  for 2. - 0.3, while the 
thin line is eq. (24b) and the dotted line eq. (24c), respectively. 

Now, Kodama and Taniuti [20] have developed 
an elegant analysis of the renormalization procedure 
in carrying out the reductive perturbation ot arbitrary 
higher order terms. They have reduced a set of equa- 
tions for a model system to a renormalized Korteweg- 
de Vries equation, and have shown explicitly that the 
renormalization can be carried out not only for the 
one soliton state, but also for the system with an 
arbitrary number of solitons. Thus, we are now stan- 
ding at a position where we can investigate dynamical 
properties of the renormalized soliton systems on 
firm ground. 

4. Self-modulation of strongly dispersive waves. - 
We now turn our interests to phenomena of self- 
modulation of a quasi-monochromatic wave in stron- 
gly dispersive region such as the electron Langmuir 
wave, the ion plasma wave and the whistler wave in 
mangetized plasmas. The problem has close con- 
nection with such phenomena of self-focusing and 
self-contraction of wave packets in nonlinear optics, 
and modulation-instability of the gravity waves on 
water. In collisionless plasmas, it is well awared by 
us that the resonant wave-particle interaction at the 
phase velocity causes very different nonlinear modu- 
lation associated with the trapped particles. Never- 
theless, we develope our disscussion for a special 
case in which the trapped particles do not give rise to 
appreciable effects. 

Taniuti et al. [21] have prcsented a systematic 
analysis of the nonlinear modulation of a quasi- 
monochromatic wave by examining a system of 
equations 

where U is a column vector with n-components ti,, 

u,, ..., u, and A an n x n matrix and B a column 
vector. The set of eqs. ( la)  -- (ld) can be reduced 
to the standard form by setting - 6$/6x = E. It 
is assumed that (25) has a constant state solution U,, 
which satisfies 

Considering a plane wave of infinitesimal amplitude 
propagating in the constant state U,, we assume that 
U can be expanded about Uo as 

where E measures the size of perturbed amplitude and 
(5, z) are the stretched space-time variables defined as 

5 = E(X - At), (284 
z = e 2 t .  (28b) 

Substitution of eqs. (28a) -- (286) with (27) into 
the original eq. (25) yields a set of equations corre- 
sponding to the each oder of powers of E and the I-th 
harmonie component. In the first order of E, the linear 
dispersion relation 

det [i-i(oI - k A(U,)) + V,, B(U),=,,] = 0 ,  
(29) 

assures that UL'~) can be expressed as 

U','!(5, 7) = $(5, 7) R (30) 

with the right eigenvector R given by 
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and u:') = 0 for 11 I # 1. In the second order of E ,  

the I = 1 component yields a condition 

to deal with nontrivial case aU!'l'/ag # 0. The I = 2 
and 1 = 0 component of the second order equation 
determines the second order beat wave u:') and 
UA2), respectively. Finally, at the third order of E ,  

the I = 1 component gives rise to the nonlinear 
Schrodinger equation, 

where p = (1/2)a2 o/o?k2 represents the dispersion 
effect, while q measures the strength of nonlinearity. 
For the ion plasma wave propagating in a system 
described by eqs. ( l a )  - ( I d ) ,  we get [22] 

Since q given by (346) is positive, the coefficients p 
and q take the opposite sign. 

When pq < 0, finite amplitude plane wave is stable 
against modulation. For this case, setting 

we obtain the followi~lg soliton solution, 

with 

This type of envelope soliton is called as a dark soliton 
reffering to the nonlinear optics. 

On the other hand, when the coefficients p and q 
take the same sign, i. e., pq > 0, the wave is modu- 
lationally unstable in the sense that the finite amplitude 
plane wave breaks up to a train of solitons. For this 
case, eq. (33) has an envelope-soliton solution, which 

satisfies the boundary condition that *(t, T )  and its 
derivatives vanish at 5 = +_ co, 

$(5, T )  = A sech [ (&) ' I 2  A(5 - v-)] x 

where an arbitrary constant V defines the velocity of 
the envelope soliton. 

Now, it has been emphasized by Ikezi and Kiwa- 
mot0 [23]  that nonlinear Landau damping processes 
play important part in the phenomena of nonlinear 
propagation of the ion plasma wave. Therefore, we 
have examined carefully contribution of the resonance 
particles at the group velocity by formulating the 
problem on basis of the Vlasov description of colli- 
sionless plasmas [24] .  It has been found that the wave- 
wave-particle resonant interaction modifies drastically 
contribution of the slow beat wave, i. e., the second 
order I = 0 component in the expansion scheme of 
eq. (27), and gives rise to the modified nonlinear 
Schrodinger equation with a nonlocal-nonlinear 
integral term, 

+ r 9 d r  $ = (3,) 
7.c t - t '  

The linear stability of (38)  can be examined by 
linearization of (35)  given as 

p = po + { Sp exp[i(K5 - QT)] + 
+ complex conjugate ) , 

( 3 9 4  
o = { So exp [i(KS - Qr)]  + 

+ complex conjugate ) . 
(396) 

The dispersion relation reduced from (38) determines 

where 

In the small amplitude limit I p/2  q I K~ % pO, this 
is reduced correctly to the nonlinear Landau damping 
process, in which the wave energy is transferred 
from the higher frequency side band to the lower 
frequency side band. 
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When pq > 0, eq. (40c) takes maximum growth 
rate 

fm = (q2  + rZ)'I2 po (4 1 u) 

with the maximum frequency shift 

for the value of wave number 

On the other hand, if pq < 0, in the large amplitude 
limit of po $ lp/2 q I K 2 ,  eqs. (406) and (40c) take 
the asymptotic values 

Above analysis illustrates that the contribution of 
wave-wave-particle resonance at the group velocity 
leads to modulational instability regardless the sign 
of ~ 4 .  

Experimental investigations of the modulational 
instability war carried out for the ion acoustic 
wave [25]. Figure 5 shows a transition from the 
linear to nonlinear propagation of ion acoustic wave 
packets in the typical low pressurs Argon plasma 
(1 - 2) x torr, with n, = (I -- 2) x lo9 cmP3, 
T, = (1.5 -- 2.0) eV and TJT, = 10 -- 12. The initial 

Vex 

1.5V 

-A--0- 

30 TIME ( B  s 1 80 
w/uPi =0.49 9crn 

FIG. 5. - Nonlinear modulation of ion-acoustic wave packet 
observed in the reference [25]. 

profile of an envelope has 30 ps duration, in which 
the amplitude increases linearly in the first 10 ps, 
then is kept constant for the subsequent 10 ps and 
falls down linearly to zero in the last 10 ps. The 
carrier frequency is about 0.5 w,,. Wave packets 
are excited in a plasma by a conventional grid exciter 
and are recieved by a plane probe at 9 cm from the 
grid. For a small amplitude of exciting voltage, 
Vex = 1.5 V, the recieved wave form resembles the 
input one, except that the frequency in the envelope 
tail is slightly higher than that in the front, indicating 

manifestation of the dispersion effect. The profile 
of the envelope changes drastically when the ampli- 
tude of wave packets increases. That is, at  Vex = 2.0 V 
the wave front steepens, and then the modulational 
instability sets in as can be seen from the wave pat- 
terns at Vex = 3.0 V and Vex = 4.0 V. In the bottom 
trace, the initial wave packet is divided into three 
parts and the amplitude of the first region is largely 
enhanced. 

Let us make an important remark on the largest 
wave packet in the bottom trace. We recognize that 
the frequency in the region A where the amplitude 
builds up with time is higher than the frequency in 
the region B where the amplitude diminishes with 
time. This shift in frequency indicates that the large 
amplitude wave propagates more rapidly than the 
small amplitude wave, providing an evidence for the 
nonlinear dispersion effect. The group velocity 
dispersion of the ion wave, on the other hand, makes 
the velocity of the high frequency part (region A) 
slower than that of the low frequency part (region B). 
Thus, as a result of competition between nonlinear 
dispersion and group velocity dispersion, the modu- 
lational instability takes place in the ion wave pro- 
pagation. This is the reason why we have observed 
the modulational instability of the ion wave. In the 
bottom trace, the frequency shift is found to be 
I Ao/wo I = 0.15, which is about two times larger 

than the shift calculated from eq. (40). This discre- 
pancy is plausible, because, in the experiment, the 
envelope amplitude damps spatially and there exists 
ambiguity in determining the amplitude experi- 
mentally. 

Recently, Ikezi et al. [26] have examined the modu- 
tation of ion waves, and concluded that the modu- 
lational instability does not take place, but effects 
of trapped particles are essential. In order to clearify 
the discrepancy between their observation and our 
results, it is necessary to re-examine experimental 
condition such as effects of ion collision, presence of 
noise in a plasma. 

Having shown an experimental evidence of the 
nonlinear wave modulation of the ion plasma wave, 
we close discussion of the present section by illustrat- 
ing results of numerical analysis of eq. (38) carried 
out by Yajima et al. [27]. Restricting our interest 
to the case of pq > 0, we examine how the envelope 
soliton given as (37) deforms under the action of the 
nonlocal-nonlinear integral term of eq. (38). Figure 6 
shows the numerical solutions of eq. (38) with initial 
value 

I)((, r = 0) = A sech [(,4) A { ]  , (43) 
2 P, 

where we take A = q = 2 p  = 1 for simplicity. The 
value of r is arbitrary chosen to be r = 0.5. We can 
see that the soliton deforms in asymmetric way and 
comes to run towards the positive direction. Figure 7 
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FIG. 6. - Temporal evolution of the envelope soliton under 
action of the wave-wave-particle resonant interaction. 

n 

3 . '-0 
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FIG. 7. - Effect of the wave-wave-particle interaction upon 
the bound state of thrce envelope solitons. The left figure shows 
evolution of envelope of eq. (44), while the other two figures 
represent distortion of the cnvelope due to the nonlocal-non- 

linear term of eq. (38). 

shows effects of nonlinear Landau damping on bound 
state of envelope solitons. Eq. (33) has a solution 

X 
cosh (3 B5) + 3 cosh (Bt) exp(4 i q ~ '  z) 

cosh (4 Bt) + 4 cosh (2 Bt) + 3 cos (4 q ~ z  .r) 
(44) 

which satisfies the initial condition 

I)(<, z = 0) = 2 A sech (Bt) (444 

B = (q/2 p)"Z A . (44b) 

This solution does not decay into a train of solitons, 
but pulsates with a period n/(2 qAZ). Numerical 
solutions of eq. (38) for the initial condition (Ma) 
indicate that solitons bounded in its initial state are 
made to be free, and each solitons travels with chang- 
ing their shape and velocity. Associated with the gain 
of velocity of soliton, the resonant particles at the 
group velocity will be ejected to the opposite direction 
as a bunch of particles. 

5. Circular polarized nonlinear AlfvCn waves. - 
Investigation of properties of the AlfvCn waves in a 
gaseous plasma attracts particular interests in con- 
nection with search for useful methods to heat a 
plasma [28]. In the problems of space physics, large 
amplitude incompressibIe magnetic field perturbation 

observed in the solar wind has been attributed to 
propagation of the Alfvtn wave [29], and has inspired 
theoretical analysis of possible existence of an exact 
solitary Alfvtn wave [30]. 

In their systematic analysis of nonlinear hydro- 
magnetic waves, Kakutani and Ono [31] have shown 
that, as far as the waves are propagating at an angle 
with a uniform external magnetic field, the nonlinear 
magneto-acoustic wave is described by the Korteweg- 
de Vries equation, while propagation of the non- 
linear Alfvtn wave is described by the modified 
Korteweg-de Vries equation. However, it has been 
noticed firstly by Kawahara [32] that when the 
hydromagnetic wave is propagating along the external 
magnetic field these equations cease to be valid, 
because the dispersion relations for the magneto- 
acoustic wave and the Alfven wave are degenerate 
in the long wave length limit for the parallel propaga- 
tion. He obtained a modified type of nonlinear 
Schrodinger equation. Since the equation derived 
by Kawahara represents a new type of evolution 
equation, we will describe briefly derivation of this 
equation, and then discuss its stationary exact solu- 
tions, which represent new types ofenvelop solitons ( I ) .  

Neglecting the effects of displacement current and 
charge separation, we can reduce the system of 
equation for cold plasma to the fundamental equa- 
tions for one dimensional propagation in dimen- 
sionless form, 

where dldt := a/at + u.a/ax, v = (u, u, w )  denotes 
the velocity of electrons, n the density of electrons, 
B = (B, = 1. By, B,) the magnetic induction vector, 
Re and R, represent ratios of the electron and the 
ion cyclotron frequencies to the characteristic fre- 
quency, respectively. The above system has a linear 
dispersion relation 

(1) E. Mjpllhus has called our attention to the fact that this 
type of nonlinear evolution equation has been derived firstly 
by R~GISTEK A., Phys. Fluids 14 (1971), 2733. 
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where 

The double sign f designates the right (+) and 
left (-) polarized Alfvtn waves, of which ampli- 
tudes are given as 

DR = By - iBy , ( 4 7 4  

@, = By + iB,. (476) 

respectively. As for stretching of the space-time 
variables is concerned, in accord with the linear disper- 
sion relation (46a), we introduce the stretched space- 
time variables 

5 = &(x - 1 ) ,  ( 4 8 4  

t = e 2 t ,  (486) 

assuming k - O(E). We expand the variables, on the 
other hand, in accord with Kakutani and Ono as 

n = 1 + E n ( 1 )  + e2  n'2) + ( 4 9 4  

u = & U ( l )  + &2 U ( 2 )  + ... (49 b)  

= &'/2 (v ( 1 )  + &d2) + ...) ( 4 9 4  

= &'/2(W(') + &,,,(2) + ...) ( 4 9 4  

Substituting eqs. (49a) - (49f)  with the transforma- 
tion of eqs. (48a) - (48b), we get the following rela- 
tionships among the first order quantities, 

o( ' )  = - BS1),  W ( ' )  = - B(')  (SOU) 

obtained by Wadati et al. [34]. Substitution of a form 

with real functions 1,4 and x into eq. (5la)  yields a pair 
of coupled equations for $ and x : 

We seek a solution in the following form, 

~ ( 5 , 7 )  = P - - QZ)  + e o )  , ( 5 4 4  

$(5,7) = $(Y) 9 (546) 

with 

Y = p - ' ( 5  - A t ) ,  ( 5 4 ~ )  

where wave number K, frequency D and propagation 
velocity 3, are constants to be determined from solu- 
tions of (53a) and (536). Under the conditions of 
eqs. (54a) -- (54c), we can obtain 

where 

@ b )  = + 2 b )  ( 5 5 4  

and, A and B are integration constants. Restricting 
our interest to solitary wave solutions which satisfy 
the boundary conditions 

Eliminating the second order quantities from set of 
@(Y) - @o = *; 9 ( 5 6 4  

equations at the order of E'/', we obtain simply the d 
- 9 - 0 ,  as l y l + c o ,  nonlinear evolution equation for the right polarized dy 

(56b) 

AlfvCn wave 
we can specify the integral constants and the shift a 1 a a2 

- qR + - - ( I qR 1 2  qg ) - iC( qR = 0 , (5 1 a) of carrier frequency as 
a t  4 a t  a t  

3 1 
and for the left polarized Alfvtn wave, A = - @ ;  - - ( A -  2K)@,,, 

2 2 (570) 

where qR and q, are the first order amplitude of 
eqs. (470) and (47b), respectively. These nonlinear a = K 2  +  KC^ 
evolution equations have been rederived by Mio Straightforward but lengthy calculation gives 
et al. [33]. They have carried out analysis of the modu- 
lation instability of the AlfvCn wave on the basis of 8 I C ~ ~  

eqs. (51a) and (51b). @(Y) = $ 2 ( ~ )  = @o + -p- x 
It wouId be worthwhile, however, to present here 

exact steady state solution of eqs. (51a) and (516) x [ ~ m  + cosh (2 y(y - (58a) 
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B(y) = O(yo) - 3 ic tan-' x 

where 

a Y* a 1 = - + 8 -  and m = -  
P P@o P ' 

The propagation velocity A is allowed to take a value 
in the region of 

2 ,  < j L < A 2  (boa) 

where 
pp 

A1 = 2(K + 2 a O )  - 2 JQj0(@, + K )  , (60b) 

A similar analysis is possible for the left polarized 
waves. In the case, solitary waves are obtained just by 
replacing 

Q + - Q  and K + - K  (61) 

in the above expressions, eqs. (59a) -- (59 f )  and 
eqs. (60b) and (60c). Then, we have an extra restriction 
on the wave number, 

As can be seen from eq. ( 5 8 ~ ) ~  K = + 1 designates 
bright modulation while K = - 1 dark modulation 
of the amplitude, respectively. Eqs. (58a) and (58b) 
represent that modulation of the amplitude is closely 
coupled to modulation of the phase. Furthermore, 
unlike the envelope soliton given by eq. (37), the 
propagation velocity 3. of the solitary wave (58a) 
and (586) is not an arbitrary constant, but it is res- 
tricted to a region defined by eqs. (60a) - ( 6 0 ~ ) .  
These properties are quite unique and could be detec- 
ted by experiment. In figure 8 referring to the right 
polarized mode, we illustrate the bright AlfvCn 
solitary wave and the dark Alfven solitary wave for 
arbitrary choosen parameters of p, K and @,. 

Besides the solitary waves discussed above, eqs. (51a) 
and (51b) admit also algebraic solitary waves. For the 
right polarized AlfvCn wave, we get 

Of)(y)  = O(yo) + 6 tan - ' (e(y - yo)) - 

- 3 tan-' (; ( y  - yo)) (626) 

FIG. 8. - Envelope solitons of the right polarized Alfvcn 
wave for arbitrary values of parameters p = 0.5, withao = 0.5 
and K = 0.01. The upper trace is for the bright (K = - I -  1 )  
and the lower trace for the dark (K = - 1 )  enveloppe solitons, 
respectively. The dotted line represents the real part of yl(t,r) 

exp(iz(5, r). 

where 

y = 4(@, + K )  + 4 6 Jao(@,, + K )  , (63a) 

6 = 
+ 1 for 1, 
- I for I , - ,  

and the velocities 3. + are defined as 

)., = 2(2 @, + K)  f 2 J@,(@, + K )  . (64) 

Figure 9 illustrates the algebraic solitary Alfvtn 
wave with the right polarization at the velocity A +  
and A-, respectively. For the left polarized AlfvCn 
wave, we get 

O$'(Y) = O(Y,) - tan-' (&(Y - Yo)) + 

where 
-- 

Y = 4(@0 - K )  + 4 , /Go(@, - K )  (66a) 
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FIG. 9. - Algebraic envelope soIitons of the right Alfvkn 
wave. 

with the velocity 

n, = 2(2 @, - K )  + 2 J@,(@, - K )  . (67) 

An algebraic envelope of the left polarized solitary 
AlfvCn wave is shown in figure 10. The figure indicates 
that contribution of a term with sin (,y(t, 7)) is relati- 
vely large for this mode. 

FIG. 10. - Algebraic envelope soliton of the left Alfven 
wave. 

We now close this section by emphasizing the 
above described peculiar properties of the solitary 
AlfvCn waves are not known for any other types of 
nonlinear evolution equations. 

6. Concluding discussions. - In the preceeding 
sections, we have discussed very fundamental aspects 
of solitons and envelope solitons in collisionless 
plasmas, restricting ourselves to their simplest forms. 
Our main purpose is firstly to emphasize that the 
theoretical studies of structure of the dressed solitons 
provide refined physical pictures on the nonlinear 
wave phenomena. Effects of the nonlinear wave 
interaction are classified to : 

1) the self-interaction effects, of which the lowest 
order terms are essential to realize the solitons or the 
envelope solitons, while the higher order terms should 
be renormalized so as to remove the secular behaviour, 
and 

2) the nonlinear mode-mode interaction effects, 
which are responsible to characterize dynamical 
processes of the nonlinear wave mode, such as the 
solitons or  the envelope solitons. 

Observed characteristics of the nonlinear wave 
phenomena will be subject to systematic analyses 
on the basis of conserved properties of the renorma- 
lized soliton cores and dynamical distortion of the 
coulds surrounding the cores. 

Secondly, reffering to the ion plasma wave, we have 
discussed nonlinear wave modulation of the strongly 
dispersive waves with account of the effects of resonant 
particles at the group velocity. These particles are 
expected to play important role in heating processes 
of plasmas by large amplitude waves. Higher order 
effects on the envelope solitons have been discussed 
by us [35], and recently Kodama [36] has presented 
a renormalization procedure for a model system des- 
cribing a strongly dispersive wave. 

Thirdly, we have presented some detailed discus- 
sions on a new type of nonlinear evolution, which 
has been derived for the circular polarized Alfvtn 
waves. Rigorous steady state solutions present 
quite exotic envelope solitons. Since this equation 
has not been examined so far on the frame-work 
of the inverse scattering method, we call attentions 
of theoretical researchers working in this field (2). 

We conclude present paper that now the self-inter- 
action effects of coherent nonlinear waves have been 
well understood owing to advancement of theoretical 
studies. These coherent nonlinear waves will be also 
playing crucial role in the anomalous transport 
processes encountered in various high temperature 
plasma devices, where the processes have been phe- 
nomenologically treated on a basis of the concept of 
quasi-linear theory. Although we admit practical 
convenience of these approaches for supplying a 
conceptual guidance, theoretical endeavor for deeper 
understanding of the fundamental properties of 
nonlinear wave phenomena is indispensable to esta- 
blish the solid grounds for researches of such com- 
plicated nonlinear wave-particles system as collision- 
less plasmas. 
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(2) At thc conferencc, D. J. KAUP has commcntcd that he 
and Newell have solved this type of nonlinear evolution equa- 
tion on the basis of a new schemc of the inverse scattering 
transformation method. We remark, however, that their boun- 
dary conditions (amplitude vanishes at  the infinity) differs from 
thc present ones, eqs. (56a) and (56h). 
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