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TRANSPORT PROPERTIES OF PARTIALLY IONIZED GASES 

M. CAPITELLI 

Centro di Studio per la Chimica dei Plasmi del C.N.R. 
Dipartimento di Chimica dell'Universita di Bari-Via Amendola 173,70100 Bari, Italy 

RBsumL. - Nous discutons des principaux problkmes apparaissant lors du calcul des coefficients 
de transport de gaz partiellement ionisks. La convergence de la mkthode de Chapman-Enskog, 
l'influence des interactions Blectron-atome, ion-atome, ion-ion, ainsi que l'influence des Btats excites 
sur les propriktks de transport ont plus particulikrement retenu notre attention. M6me si, dans ce 
travail, nous avons tenu compte de certains effets de dkskquilibre, l'ensemble des rksultats corres- 
pond aux plasmas en LTE. 

Nous discutons, ensuite, la precision des tableaux disponibles dans la littkrature et, pour finir, 
nous prtsentons une application des rdsultats obtenus a un probleme concernant la chimie des 
plasmas. 

Abstract. - The main problems arising in the calculation of transport coefficients of partially 
ionized gases are discussed. Particular attention is given to the convergence of the Chapman-Enskog 
method, to the influence of electron-atom, ion-atom and ion-ion interactions and of the electronically 
excited states in affecting the transport properties of a plasma. The bulk of results refer to LTE 
plasmas, even though some non equilibrium effects are taken into account. 

The accuracy of available tabulations is then discussed and an application of present results to 
a problem of plasmachemistry interest is finally presented. 

1. Introduction. - Thermal plasmas are often used ma1 conductivity of a u-components gas is based on 
as chemical reactors for the treatment of different the expression of the heat flux vector q [2] 
materials, the plasma being tought of as a source of 
heat for the endothermic processes [I]. The optimiza- = - Ar pT + 5 n, hi vi - nkT 
tion of a plasma reactor requires the knowledge of i =  1 

plasma properties such as the thermal conductivity, 
tl 

the viscosity (r) and the electrical conductivity (o). x D' di/mi ni - lint V T  . (1) 
The computation of these quantities is straightfor- i =  1 

ward for a low temperature gas ( T c  2 000 K, 
p = 1 atm.), where neither dissociation nor ionization 
occurs. As the temperature increases, the electronic 
levels of the atoms (or of the molecules) begin to be 
populated and dissociation as well as ionization 
reactions have to be taken into account. 

The thermal conductivity of a L.T.E. plasma can 
now be calculated as a sum of three contributions 
(translational, internal and reactive). The problems, 
arising in the evaluation of each of these terms as 
well as in the computation of rj and o, will be discussed 
in this paper. Emphasis will be given to L.T.E. plasmas, 
even though some non equilibrium effects will be 
taken into account. The accuracy of available tabula- 
tions will be discussed at the light of the results pre- 
sented in this paper. Finally an application of the 
present results to problems of plasma chemistry 
interest will be presented. 

2. Transport coefficients. - 2.1 TOTAL THERMAL 

CONDUCTIVITY. - The calculation of the total ther- 

Here vi and di are the diffusion velocity and the diffu- 
sion force of the ith species, respectively, while 1' 
and A,, are the translational and internal thermal 
conductivities. The quantities lz,, hi, T, Df and mi 
are, in the order, the number density, specific enthalpy, 
temperature, multi-component thermal diffusion and 
mass of the ith species. 

Eq. (1) can be rearranged [2, 3, 41 as follows 

Here p is the mass density and Eij is defined as an 
element of the inverse of the matrix whose general 
element is Dij mj (Dij is the rnulticomponent diffusion 
coefficient). 1, defined by eq. (3), represents the 
true translational thermal conductivity correspond- 
ing to a mixture which has come to a steady state 
composition in the temperature gradient. 
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Here 1, represents the fourth approximation to A 
in the Chapman-Enskog method. To obtain the 
third approximation A,, all qmP blocks (each block 
is a matrix of v order) with m or p > 3 are deleted 
in eq. (4), while in this formalism the first C-E approxi- 
mation vanishes. 

The problem of convergence of eq. (4) has been 
studied in detail in ref. [4] for argon plasmas. I t  turns 
out that A3'is two times bigger than A2 when the ioniza- 
tion degree of the plasma is greater than 50 %, while A4 
and A, are practically the same. Similar results have 
been obtained in this paper for an atmospheric 
nitrogen plasma (see Fig. 1). 

According to the Chapman-Enskog method [3, 41, Simplified expressions for A have been obtained 
A (not to be confused with A') can be calculated as considering that the distribution functions of the 

heavy components are not affected by the electron- 
A4 = - (7518) k(2 ~ k T ) ~ ' ~ / l  q I x heavy particles collisions ; as a consequence A can be 

the propertie; of the electrons, while 1, depends on 
the collisions between electrons and the other species. 
One of the causes of the slow convergence of the C-E 
method (i.e. the mass of electrons) disappears in AH, 
so that it is possible to use a different level of approxi- 
mation for the two terms of eq. (5). This problem has 
been considered in detail in [5] ; the results show that 
the 3rd approximation to A, and the second one for 
AH give the same results as those obtained with the 
complete 3rd approximation (as given by eq. (4)). 

The working equation for (13, is [5] 

FIG. 1.  - Values of 1,/1, as a function of temperature for a nitrogen 
plasma (- results obtained without O(1) terms in the charged- 

charged collision integrals ; - - - - - - - the same with O(1) terms). 

splitted into two contributions, one coming from the 
electrons (A,) and the other from the heavy compo- 
nents (1,) [5] 

(4) A = A E + A H .  ( 5 )  

It should be pointed out that AH is unaffected from 

X 

The primary cause of the slow convergence of the 
C-E theory lies in the fact that the mass of the elec- 
trons is very much different from that of the heavy 
components, a secondary cause being represented by 
the different behaviour of the cross-sections for the 
various interactions. 

11 12 13 
qij qi j qij ni 

21 2 2 
qi j qij q p  0 

32 q$l 4i j 4i 33 j 0 
O ni/mj'12 0 0 

where n, and me are the number density and the mass 
of electrons respectively, k is the Boltzmann constant. 

Expressions for q are available in [5] ; they are 
complicated functions of the number densities of 
all species and of the transport cross-sections between 
electrons and all other species. 

The second approximation to AH is of the form : 

where xi is the molar fraction of the ith component 
and the &j's are functions of the collision integrals 
between heavy components, of the temperature, of 
the molecular weights and of the composition (see 
ref. [2]). 

Attempts to simplify eq. (7) have been made in 
ref. [6]. 

The reactive thermal conductivity A,, which repre- 
sents the contribution due to the chemical reactions 
occurring in the plasma, can be calculated with a 
good approximation by means of the general Butler- 
Brokaw expression [7] 

All - - - Al,  AH1 

A,1 . . - AN, 4 4  

AH, . . . AH, 0 

All  * 

A,, . 
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Elements A?, ($ is the number of independent ciated from figure 2 [3]. Higher approximations of 
chemical reactions) are given by the C-E method for q are available in [8]. 

2 . 3  ELECTRICAL CONDUCTIVITY. - The electrical 
conductivity o is defined by the equation 

($-?)(!$-f) (*b) J, = - oE (1 1) 

where E is the electrical field and J, is the charge 
where Dkl represents binary diffusion coefficient and flux density. Due to the mass of electrons, the electrical 
nk are stoichiometric factors, while AHi represents conductivity is mostly due to the electrons so that 
the enthalpy difference involved in the ith chemical the C-E method poorly converges for o. Once again 
reaction. 

The same equation can be used for the transport 
of electronic energy, while the internal contribution 
due to the vibrorotational energies is satisfactorily 
given by the Eucken approximation [2] 

u Dii xj  
Lint = 1 (LintIi 1 + C - - 

i =  1 " j =  j:i 1 qj xi ) (94 

where cpi is the specific heat at constant pressure. 

2 .2  VISCOSITY. - The equations for the viscosity 
are very similar to those reported for A, even though 
in this case the C-E first approximation does not 
vanish. As in the case of L, q can be expressed as the 
sum of two contributions [5] 

Due to the mass of electrons q ,  -g q,, so that the 
calculation of q can be performed with the first 
approximation of the C-E method, as can be appre- 

ARGON 1 atm 1 

FIG. 2. - Values of q,/q, as a function of temperature for an argon 
plasma (see ref. [4]). 

the third approximation must be used for o (see 
ref. [5]). 

3. Collision integrals (transport cross-section). - 
Accurate calculations of transport coefficients can 
be obtained once the collision integrals (transport 
cross-section) of the different interactions are known. 
These quantities can be obtained by performing three 
integrations [2]. First, one determines the classical 
deflection angle 8(b, E) as a function of impact 
parameter b and relative energy E 

where the classical turning point or distance of 
closest approach r, is the outermost root of 

' where V(r) is the interaction potential. 
A further averagiipg over the impact parameter b 

yields the relevant cross-section 

and the above quantities can in turn be employed 
for a further energy averaging that produces the 
collision integrals as a function of temperature 

&',"(r) = { (s + 1) ! (kT)S+ } - x 

x lom e(')(E) Es+ e-E/kT dE (15) 

The problem of calculating a('*S) therefore reduces 
to the knowledge of V(r). 

Four interactions are important in thermal plasmas : 

a) Charged-charged ; 
b) Electron-neutral ; 
c) Atom-ion ; 
d )  Neutral-neutral. 
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a) Charged-charged. - The screened Coulomb 
potential can be used for calculating the collision 
integrals of charged-charged interactions 

where d is the Debye lenght. 
They assume the expression [4, 91 

fi(t,s) a f (I, s) b:(ln A - O(1) terms) (17) 

section Q(') is known. Tables of these cross-sections 
are presently available for most gases of plasma 
chemistry interest [12]. The accuracy of these tabula- 
tions depends on the particular system under conside- 
ration. It is interesting to know the effect of these cross- 
sections on and a. Figure 4 reports the values 
of (A,), normalized to those obtained by increas- 

IONIZATION DEGREE 

0.025 0.23 0.545 0 95 

4 .  

where A = 2 dlb, is the ratio between the Debye 
lenght and the average closest impact parameter b, 
(see [5, 91). To the predominant In A term, these 
formulas give the same results as those derived by 
Spitzer and Harm [lo], using a different approach. 
Other formulations have been proposed to calculate 
the terms after In A (see for example [I I]). The results 
obtained by more sophisticated theories give for 
atmospheric plasmas results ranging between those 
obtained with and without the O(1) terms in eq. (17). 
The use of eq. (17) with and without O(1) terms yield 
therefore lower and upper limits for fi('ps). Figure 3 
shows the effects of the insertion of the O(1) terms 
on 3, for different plasmas. It should be noted that 
the importance of the O(1) terms increases for those 
systems, that, at a given temperature, present an 
higher ionization degree (i.e. for xenon plasmas) 
(see also the effects of O(1) terms in the convergence 
of C-E approximation in figure 1). 

1.3 p = I  atm 

FIG. 3 . -  Values of AE/AE(o(,,, as a function of temperature for 
different plasmas (A,(,(,,, calculared without O(1) terms). 

b) Electron-neutral. - Electron-neutral collision 
integrals are usually obtained by numerical integra- 
tion of eq. (15) once the momentum transfer cross- 

FIG. 4. - Values of AE/Ak and AE/ATOT as a function of temperature 
for a nitrogen plasma (A; has-been obtained increasing by a factor 

4 Q:L~L,~-~*) .  

ing by a factor 4 the collision integrals @?a2 and 
@'I"k. It should be noted that the electron-neutral 
cross-sections loose their importance for ionization 
degrees > 2.5 %, as a resblt of the increasing irnpor- 

IONIZATION DEGREE 

0.025 0.23 0.95 
I 

FIG. 5. - Values of o/a' as a function of temperature for a nitrogen 
plasma (CJ' has been obtained increasing by a factor 2 @':'k). 
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tance of electron-electron collisions. Moreover, one 
should appreciate that the electron-neutral cross- 
sections affect (&), when this term is a small contri- 
bution to the total thermal conductivity (see Fig. 4). 
Similar arguments apply to the electrical conductivity, 
as can be appreciated from figure 5. 

c) Atom-ion. - Atom-ion interactions are often 
the crucial point in the calculation of the transport 
properties of partially ionized gases. The corres- 
ponding collision integrals strongly affect A,, A,, 
4, and r. 

In the case of atom-ion interaction, one must 
distinguish between the resonant case (MM') and 
the non resonant one (MA+). In the first case the 
collision integrals diffusion type (1 odd) can be obtained 
from the knowledge of the charge transfer cross- 
sections Q,, 

by using [13] 

Q(I) = 2 Q,, (19) 

Q,, = 1/2(A - B In v)li2 . (20) 

With the approximations (18)-(20), the collision 
integral diffusion type can be obtained in closed 
form (see [14]). It appears in the implicit form 

Q,, in turn, can be obtained either by means of experi- 
mental techniques or by means of theoretical methods. 
In this last case, according to a semiclassical approach, 

\ > 

Q,, is given by [13] 

Q,, = 112 7cb: (22) 

where b, can be calculated according to the following 
relation [I 31 

AV,, represents the difference of gerade-ungerade 
potential energies arising in the collision. At the 
distances important for the charge transfer cross- 
sections, AVgu can be expressed through an exponen- 
tial form 

AV,, = C exp - (ar) (24) 

and the integral (23) can be approximated as [13] 

(Clhv) (nb,/2 a)'/' exp -- (ab,) = 1l.n . (25) 

In the systems of plasmachemistry interest the 
collision usually occurs along several potential curves 
(for ex. for both N(4S)Nf (3P) and 0(3P)0+(4S) cases, 
one can have 2 3 4 , 6 ~  guy 2,4*611gU potentials). In these 

cases the total charge transfer cross-section is obtained 
by averaging the different contributions [13] 

Several methods have been proposed to obtain 
A Vgu(r). The first approach, suggested in [15], is based 
on the extrapolation of spectroscopic potential curves 
for the states at low spin (i.e. 2 ~ , ,  211gU) and to the 
finding of appropriate relations between high and 
low spin potentials. As an example, the following 
potential relations hold at large internuclear distances 
for NN' and 00' collisions [16-181 

The most simple approach to calculate all AV 
splittings for NN' and 00+ systems is therefore 
to use extrapolated experimental potentials for 2 ~ , u  

and 211gu pairs and then to obtain the remaining 
potentials with the aid of eq. (27). 

Ab initio quantum mechanical methods have also 
been used for calculating AVgU either with simplified 
methods (Heitler-London 116-181) or with more sophis- 
ticated ones (configuration interactions method [19- 
211). A completely different approach uses asymptotic 
methods [22, 231. 

The effect of the different AVgu calculations on 
fi(ll) of NN+ and 00+ systems is represented in 
figures 6, 7. The collision integrals diffusion type 
have been obtained by eq. (19)-(25) with the aid of 
the different potentials, while in the case of experi- 
ments [24-251 and of asymptotic methods a direct 
use of Q,, has been made. 

re! I * t  

FIG. 6. - Collision integrals diffusion type for N(4S)N+(3P) 
(curve 1 : calculated from eq. (1 8)-(26) + A V,(' X, 2n) from [15] ; 
curve 2 : the same with AV from [45] ; curve 3 : the same with AV 
of [19] ; curve 4 : original values ref. [IS] ; curve 5 : AV from [IS]; 
curve 6 : original values of [16] ; curve 7 : calculated from the charge 
transfer cross-sections of 1221 ; curve 8 : AV from [20] ; curve 9 : 
calculated from the experimental charge transfer cross sections 

of [24 ; curve 10 : AVfrom [16]). 
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FIG. 7. -- Collision integrals diffusion type for 0c3 P)-0' (4S) 
interaction (curve 3 : AV from [21] ; curve 9 : calculated from the 
experimental charge transfer cross-sections [25]; the other curves 

as in figure 6). 

The behaviour of NN' and 00+ systems is indeed 
very similar, showing a satisfactory agreement between 
the @ll' values obtained by Heitler-London and 
asymptotic methods and the corresponding experi- 
mental ones (i.e. based on Q, of ref. [24-251). The 
agreement decreases when use is made of experimental 
potentials or from more sophisticated quantum mecha- 
nical methods. This last result is rather surprising 
since the potentials of ref. [19-211 are in principle 
more accurate than the Heitler-London potentials. 

It should be noted that the different 52'") calcu- 
lations differ by as much as a factor 2, which propa- 
gates up to a factor 1.5 in A, and q (see Fig. 8). 

The collision integrals viscosity type (I = 2, 4, . . .) 
for MM+ interactions are not affected by the charge 
transfer mechanism. They can be therefore calculated 
from eq. (12)-(15) once the V(r) potential is known. 
The same technique can be applied to the calculation 
of a(',* (I = 1, 2, 3, . . .) for the non resonant inter- 
actions (MA+). Once again the problem reduces to 
the availability of the different potential curves 
arising in the collision. The available V(r) informations 
are then put in analitical forms, the collision integrals 
of which are known. The most used atom-ion model 
potentials are the repulsive exponential potential [26] 
and the Morse potential [27l for repulsive and bound 
states respectively 

V(r) = D exp - 2 C/o(r - re) - 
- 2 exp - C/o(r - re) . (29) 

The polarizability model 

N2 1  atm 

~ ( 1 0 ~  K)  
FIG. 8. - Values of li/li and q/qr as a function of temperature for 
a nitrogen plasma (the dierent contributions 1' as well as the 

viscosity q' have been calculated increasing by a factor 2 62:; !). 

is also often used, specially when potential information 
are missing. The accuracy of these forms in repro- 
ducing the true potential appears, as expected, to be 
a function of the examined relative energy intervals. 
This problem can be understood by looking at 
figure 9, where the collision integrals for the systems 
Kf Ne, K'Xe obtained by the above model potentials 
have been compared with the corresponding ones 
derived from an accurate fitting of the potentials 
of ref. [28] at all internuclear distances. In this last 
case the numerical algorithm developed by Ohara 
and Smith [29] has been used for computing a(''). 
It should be used that the exponential repulsive 
potential works well at high temperature, while the 
Morse form can be considered a satisfactory approxi- 
mation to the potential. The use of a polarizability 
model overestimates the transport cross sections. 
It is clear that an accurate fitting of the potential 
gives a more satisfactory temperature dependence 
of the collision integrals. 

In general the knowledge of the potential for M'A 
systems is very scanty. Fortunately the influence 
of M'A, MA+ cross-sections on the transport 
coefficients is in general lower than the corresponding 
influence of the resonant processes, as can be appre- 
ciated from figure 10. Here a variation of a factor 10 
of the collision integrals of the He-Nf and Hef-N 
interactions is reflected up to a factor 2.7 on the 
viscosity and up to a factor 1.3 on the total thermal 
conductivity, this influence being of course dependent 
on the temperature range examined. Similar arguments 
apply to the atom-atom interactions. 
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FIG. 9. - Collision integrals of K"-Ne and K+-Xe interactions as a function of temperature (0--0--0-- : polarizability model ; **+- : exponential repulsive model based on potential data of [28]; ------- : Morse potential based on data of [28] ; 
0-0-0- : accurate fitting of data of ref. [28]). 

He-N2 50% I atm 
4. Excited States. - The influence of electronically 

excited states in affecting the transport properties 
of partially ionized gases has been long neglected 
because of the ignorance of the transport cross- 
sections of these species. Recently, however, many 
research groups have performed ab initio quantum 
mechanical computations of the potential curves of 
the excited states. From these data it is possible to 
calculate the transport cross-sections of the excited 
states and to predict their influence on the transport 
coefficients. 

Let us consider first the so called low lying excited 
states i-e. the states belonging to the same principal 
quantum number as the ground state. Many compo- 
nents of plasmas such as oxygen (0(3P), O('D), 
O('S), Of (4S), Of (2D), O+('P)) and nitrogen (N(4S), 
N(2D), N('P), N + ( 3 K  N+('D), N+('S)) possess 
these states, which, on account of their low excitation 
energies, can be strongly populated in the temperature 
range 8 000-20 000 K. 

FIG. 10. - Values of Ri / l i  and il/q' as a function of temperature for 
Figure 11 shows the collision integrals diffusion 

a 50 % He-N, plasma (the different contributions A; as well as the type of the interactions NN+ and OO+ for the different 
viscosity q' have been calculated increasing by a factor 10 d electronic states. The data for NN' have been taken 

collision integrals of the interactions ~ e - ~ + - a n d  He+-N). from [30], while those for 00+ have been calculated 
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0-O* ELECTRONIC STATES 

FIG. 11. - Collision integrals diffusion type of 00+ and NN+ interactions in different electronic stat- 
-- -. -- - - -. -- - - -- 

in the present work with the aid of eq. (18)-(25) and Results for oxygen-oxygen and nitrogen-nitrogen 
with the potentials of ref. [21]. It should be noted atom-atom interactions in different electronic states 
that the two systems behave similarly, presenting are available in [13, 311. The influence of the cross- 
minima in the collision integrals corresponding to sections in figure 11 on A, and Ai, can be studied 
O(1D)O+(4S), 0(1S)0+(4S) and N(4S)N'(1D) inter- considering the low lying excited states as new species 
actions. These minima can be explained on the fact in the plasma. In this context, under the LTE hypo- 
that the transfer of more than one electron is less thesis, one can apply eq. (8) inserting in it the following 
probable than the corresponding one electron case. reactions (for oxygen plasmas) 

O(3P) F? O+(4S) + e ; 0(3P) P O+('D) + e ; 0(3P) P 0+('P) + e 

0('D) F? O+(4S) + e ;  O('D)P O+('D) + e ;  O('D) PO+('P) + e (3 1) 
0 ( 1 S ) e 0 + ( 4 S )  + e ;  O ( ' S ) P O + ( ~ D ) +  e ;  O('S)PO+('P) + e .  

Values of rZ, calculated in this way contain A,,, since Figure 12 shows the A, values normalized to those 
this quantity can be calculated from eq. (8) including obtained by considering all cross-sections equal to 
the reactions the ground state interactions 

o ( 3 ~ )  o ( l s )  (i.e. O(3P)0+(2D) = 0(1D)0+(2D) = 
o(3p) P o(~D) ; 

(32) = o(~P)o(~D) = . . . = o(~P)o+(~s)) . 
0+(4s)  P o+('D) ; 0+(4s) + o+('P) . 

Differences up to 10 % and 20 % are observed for 
These reactions are however not independent in oxygen and nitrogen plasmas respectively. It should 

the present model, since eq. (32) can be expressed be noted, however, that the cross-section of figure 11 
through eq. (31). become important in non equilibrium problems. 
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~ ( 1 0 '  K) 

FIG. 12. - Values of IR/LRG as a function of temperature (ARG has 
been calculated with all cross-sections equal to N(4S)-N+(,3P) or 
0(3P)0+(4S) see text; - oxygen plasma; - - - - - nitrogen 

plasma). 

As for the high lying excited states (i.e. electronically 
excited states not belonging to the same principal 
quantum number as the ground state) figure 13 
shows the behaviour of the interactions H(n)Hf 

a function of the principal quantum number, while 
the H(l)H(n) values converge at high n to the corres- 
ponding H(1)H' values. 

Figure 14 shows the effects of these states on the 
viscosity (details can be found in ref. [32]). The effects 
are small (up to 10 %) if use is made of the Griem 
criterion for calculating the electronic partition func- 
tion of hydrogen atoms, but they increase (up to 
50 %) when the concentration of hydrogen atoms 
is 5 times that calculated by Griem's criterion. Once 
again one should stress the importance of these 
cross-sections on non equilibrium plasmas. 

I I J 
1 e 1s 2 e  

~ ( 1 0 '  K)  

FIG. 14. - Values of qg/qexc as a fuhction of tefnperature (qg ground 
state values, see text; - population density of excited states 
calculated with Griem's criterion ; - - - - - - - population density 

of excited states increased by a factor 5). 

5. Comparison with the experiments. - ~ i h r e  15 
shows a comparison of the total thermal conductivity 
calculated with the methods described in the present 
work with several experimental measurements [33-361. 

- 2 The agreement can be considered satisfactory, even 
though the errors in the experimental determinations 

t I I I I I of AT, do not yet allow to choose the best set of 
2 3 4  2 3 4  transport cross-sections for nitrogen.' Similar results 
Principal quantum number n apply to other gases. 

FIG. 13. - Collision integrals diffusion and viscosity type as :a 
function of principal guantum number n for H(n)-Hf and H(1)-H(n) 6. Non equilibrium plasmas - So far all considera- 

interactions. tions .have been made on the L.T.E. 'plasmas. 
Very often, however, for atmospheric plasmas it 

occurs ' that the electron temperature is greater than 
and H(l)H(n), where H(n) denotes an hydro'gen the heavy components temperature. The theorj of 
atom in the nth principal quantum number. The transport coefficients for two'temperatures plasmas 
data have been taken from ref. [32]. It should be has been developed inin.detail 1371. However expressions 
noted the strong variation 'of fi(n)H' integrals as similar to those reported in the previous pages can. 
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NITROGEN l ATM 

FIG. 15. -Total thermal conductivity compared with experiments 
(- (thin line) theory [45] - (thick line) theory with sz'241 
from 1241 ; - - - - - - - theory with 62&+ of [I61 -.-.-.- theory with 

Q#,'l from [18]. Experiments 1331 ; X [34] ; w'[35] ; V [36]). 

be again used, if the collision integrals for electron- 
heavy components are calculated at the electron 
temperature and those for heavy-heavy components 
at the gas temperature. As for the plasma composition 
to be inserted in the transport equations, it can be 
obtained by a two temperatures Saha equation [38,39]. 
It is clear that such a procedure can be applied pro- 
vided the electron distribution function is not too 
far from a Maxwellian one, so that the C-E method 
applies. When this is not possible, it is necessary 
to solve the appropriate Boltzman equation as in 
gas lasers discharges. 

Finally we want to mention the role of inelastic 
collisions, which apparently can be neglected for 
L.T.E. plasmas [40], while their importance increases 
for molecular gases (see for ex. [41]). 

7. Accuracy of available tabulations. - Tables of 
transport coefficients of plasma chemistry interest 
(rare gases (He, Ar, Xe) [14, 42, 431, diatomic species 
(N,, O,, H,) 14-46] and of their mixtures (He-N,, 
Ar-N,, Xe-N,, Ar-H,, N,-H,, air) [47, 50, 441) are 
presently available. 

These calculations have been in general obtained 
with the higher approximations of the C-E method, 
after an appropriate choice of the relevant cross- 
sections. An apparent exception is represented by 
the well known tabulation of Yos [44] for H,, N,, 0, 
and air plasmas. This author infact uses kinetic 
formulae of doubtful accuracy utilizing, on the 
contrary, transport cross-sections of great accuracy. 
Yos, however, being aware of the inaccuracy of his 
formulae, modified the transport cross-sections of 
charged-charged interactions so to reproduce the 
thermal and electrical conductivity of a completely 
ionized gas as given by the Spitzer and Harm for- 
mulae. As a consequence, Yos' tabulations can be 
considered satisfactory, even though the agreement 
of these calculations with more accurate ones is 
often fortuitous. 

The tabulations of ref. [47l include the systems 
H2-N,, Ar-N, and Xe-N, in the temperature range 
5 000-35 000 K. The greater incertitudes of these 
values are essentially due to : a) the electron-nitrogen 
atom cross-section were put equal to 4.12 A2 ; b) the 
GN,, was taken from ref. 1151 ; c) the ion-atom 
(non resonant) interactions were calculated according 
to the polarizability model ; d) the internal thermal 
conductivity of atoms was calculated with insufficient 
accuracy. At the light of the considerations made in 
the present work, we believe that &, and tl of 
ref. [47l can be considered accurate within 30-40 %. 

Revised tables of Ar-N2 system, including also 
the electrical conductivity are available in ref. [48]. 

Tables of Ar-H, mixtures are also available [49] ; 
in this case the accuracy is better, because the non 
resonant Ar-H+, Ar+-H interactions have been 
treated with realistic potentials. 

The accuracy of N,-H, mixtures is discussed 
in [50]. 

8. Conclusions. -As a conclusion we present an 
application of the present results in the estimation 
of the heat flux from a plasma to a spherical particle 
of diameter D travelling the plasma. This problem 
is very important in the decomposition of solids in 
plasmas, since the plasma-particle heat transfer is 
often thought as the limiting step of the chemical 
reaction rate. 

The following heat balance holds [51] 

Here A is the thermal conductivity of the plasma, 
Tg and Tp are the gas and particle temperature, 
qp is the thermal capacity of the particle, AHTd is 
the enthalpy of decomposition at the temperature 
of decomposition T,, E, and a are the particle emis- 
sivity and the Stephan-Boltzrnan constant, h,(T,) is 
the contribution of radiation to the heat flux and 
dnldt is the decomposition rate. It appears that 
dnldt is strongly affected by 1 and by q which enter 
in Prandtl and Reynolds numbers. It should also be 
noted that the thermal conductivity appearing in 
eq. (34) can be the total one or the frozen 

(If = 40~ - 
according to the type of particle-plasma boundary- 
layer and to the type of catalitic activity of particle [51]. 
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