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SMALL PARTICLES-ELECTRONIC PROPERTIES I. 

DISCRETENESS OF ENERGY LEVELS IN SMALL 
METALLIC PARTICLES 

R. KUBO 

Department of Physics, University of Tokyo, Japan 

Résumé. — Dans une petite particule métallique les niveaux d'énergie électroniques ont une 
structure discrète. Si l'espacement des niveaux est comparable ou supérieur aux paramètres 
d'énergie intervenant dans un phénomène physique, la discontinuité des niveaux peut donner 
lieu à un comportement tout à fait différent de celui du métal massif. On discute ici des idées de 
base et des récents progrès accomplis dans ce domaine. 

Abstract. — In a small metallic particle, the quantized electronic energy levels make a discrete 
structure. If the level spacing is comparable to or larger than relevant energy parameters in a 
physical phenomenon, the discreteness of levels may give rise to some anomalies quite distinct 
from the normal behaviour in a bulk metal. In this review the basic ideas and recent progress are 
discussed. 

1. — If we take the familiar picture of free 
electrons, the one-electron levels in a piece of metal 
are considered as quantized states. In the bulk 
limit, however, these levels are quasi-continuous 
and a sum over these states is replaced by an 
integral with a properly defined density of states, 
which is independent of the boundary condition 
imposed on the wave function as known by the 
Weyl-Laue theorem. In thermal equilibrium, each 
state is occupied with a probability given by the 
well-known Fermi distribution function. Thermody
namic properties of metallic electrons are thus 
easily calculated. Dynamic properties, such as 
electronic conduction, spin relaxation and so forth, 
are governed by the scattering processes of elec
trons by phonons or defects perturbing the ideal 
periodicity of the lattice. 

This standard picture of metallic electrons may 
have to be drastically modified when we deal with 
small particles. The finiteness of extension brings 
about two distinct effects on the electronic states in 
a particle. The first is the real discreteness of the 
energy levels and the second is the surface effect 
due to the boundary conditions. As the surface-to 
volume ratio increases, the latter effect gives a 
correction to the effective density of states. For 
example, in the tight binding picture the band width 
will be narrowed around the center and the 
effective density of states may increase. Certainly 
the surface effect of this sort may become signifi
cant under circumstances, but here we shall be 
mainly concerned with the first effect, namely that 
of the discreteness of energy levels. 

A small particle is indeed a giant molecule 
composed of many thousand atoms. The one-
electron levels in a given particle will be denoted as 
... 8-2, e~i, eo si 62 ... At the absolute zero of 

temperature electrons in the particle fill these levels 
up to e0, leaving the levels ei, e2, ••• empty. If the 
number of electrons is even the level eo is occupied 
by a pair of plus and minus spins ; if it is odd, the 
level eo is occupied by an electron with free spin. 

In practice we observe a collection of large 
number of particles. Since the size and shape of 
particles can be controlled only within a limited 
accuracy, the set of electronic levels (... e_2, e_,, 
e0, ei, e2, ...) is considered as a statistical object 
defined by the statistical ensemble of particles. 
Consequently, the spacing A for a pair of succes
sive levels is also statistical; its distribution func
tion will be denoted by P(A) ; namely 

P{A)dA = Vr(A,A + dA) (1) 

is the probability to find A in the interval A and 
A + dA. The average spacing 

8 = J AP(A ) dA 

is easily estimated to be 

8 ~ D{Cr" = OU/N) (2) 

where D(£) is the density of states at the Fermi 
level in a bulk metal converted to the average 
volume of a particle and iVis the average number of 
metallic electrons in a particle. For a free electron 
model I is the maximum kinetic energy at 0 K and 
for a band model t, is measured from the bottom of 
the band. This estimation shows that 8 is inversely 
proportional to the size of particles (*)- Since g is a 
few electron volts in most metals, 8 amounts to 
10"4 eV if the size is, say 50 A in diameter. 

(') In a very small particles, 8 may be smaller than this 
estimation because of the narrowing of band width at the 
surface. 
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In treating bulk properties, the spacing S is 
considered to be smaller than any of relevant 
energy parameters ; this is in fact what is meant by 
the quasi-continuous spectrum of energy levels. On 
the other hand, for particles small enough, the 
spacing 6 may no longer be small in comparison to  
the relevant energy parameters. Thus, thermal, 
properties of particles, the heat capacity or the 
magnetic susceptibility for example, may be quite 
different from those of bulk if we work at such low 
temperatures as 6 2 kT or at weak field 6 2 p~ H. 
Dynamical responses of particles at a frequency w 
so low as to satisfy the condition hw 5 6 may be 
completely different from those of a bulk system. 

Thermodynamic anomalies of this sort was first 
discussed by Frohlich [I] many years ago. He 
assumed energy levels to be equally spaced and 
showed naturally that the electron heat capacity 
should decrease exponentially at very low tempera- 
tures in contrast to the Sommerfeld linear law. 
Later, Brout, Greenwood and Krumhansl [2] point- 
ed out the anomaly of the spin susceptibility at low 
temperatures. Independently the present author 
published a paper [3] on this subject, which seems 
to  have attracted attention of experimentalists as 
well as of theorists to this rather unusual physics of 
small particles. As was discussed in this work, 
there is another peculiar feature of metallic parti- 
cles which is very important but had not been 
clearly realized before. That is the neutrality 
condition of each single particle. 

If just one electron is added to or is lost by a 
particle of radius R, the work required in the 
process amounts to about e2/2 R. For R equal to the 
hydrogen radius, this energy is 13.5 eV ; for 
R - 50 A or 500 A, it is 0.13 eV or 0.013 eV. This 
energy is considerably larger than the thermal 
energy kTat room temperature. This means that, if 
particles are separated, each particle keeps the 
number of electrons in it very strictly constant and 
remains electrically neutral. In fact, the presence of 
this energy is seen in conduction properties of thin 
metallic films in which evaporated atoms form 
islands with some tunnelling contacts [4]. For a 
certain range of effective thickness the conduction 
is of activation type, the activation energy increas- 
ing with decrease in thickness or the size of islands. 
Competition between the contact and the localiza- 
tion of electrons is a very popular subject in related 
fields of physics, for example in the metal-insulator 
transition. 

The reason why the neutrality condition is so 
important is seen from the following consideration. 
If this condition needs not be forced on each 
particle, electrons are freely exchanged between 
different particles. Then the whole sets of random 
levels for a great number of particles just make a 
continuum spectrum ; there is nothing left to  
discriminate a collection of particles from a bulk 

metal and accordingly there is no thermodynamic 
anomalies. On the other hand, if the neutrality 
condition should be strictly kept, the statistical 
mechanics of a single particle is that in which the 
electron number is kept constant, namely the 
canonical statistics rather than the grand-canonical 
statistics. Usually the difference of the two is 
ignored because fluctuation of electron number in a 
grand-canonical ensemble is considered to be negli- 
gible. It should be clearly recognized that the 
condition for this is that 

and not simply that the electron number is large. 
Therefore, the thermodynamics of small particles 

is properly treated by applying the canonical 
statistics for a single particle and then averaging 
thermodynamic quantities over the statistical 
ensemble of the sets of energy levels. Calculations 
of this sort is generally pretty hard. 

In order to make the problem simpler and to look 
into the effects of the discreteness of energy levels, 
one sometimes uses the constant spacing model, in 
which every particle is assumed to have levels with 
a constant spacing S as was first treated by 
Frohlich. The adequateness of this simplification 
depends on what one would like to see. Thermody- 
namic anomalies appearing in this model are not 
quite the same as those in the models with 
statistical level schemes, but a great advantage is 
that it allows rigorous mathematical treatments [5]. 
It is interesting, for example, to note the difference 
between canonical and grand-canonical treatments 
of this model ; the occupation probability of the 
levels is discontinuous in the canonical statistics in 
contrast to the familiar continuous Fermi distribu- 
tion function. 

2. - Let us now consider the heat capacity at 
very low temperatures. Figure 1 shows electronic 
configurations of a particle with an even number of 
electrons at the ground state and the lowest excited 
states. The partition function is given by 
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FIG. 1 .  - Electronic configurations in a particle with an even 
number of electrons ; a. is the ground state and a,, az, a3 and a4 

are excited states. 
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where p = l/kT, and the free energy by 

F,,,, = - kT log Zeven = - 4 kT e-""~-'d + - - -  . 
(4) 

The ground state and excited states of a particle 
with an odd number of electrons are shown in 
figure 2. The partition function and the free energy 
are 

Fda = - kT log 2 - kT(e-*'"~-"~ t 

FIG. 2. - Electronic configurations in a particle with an odd 
number of electrons ; b; and bo are the ground states and b,, bz, 

bs and b4 are excited states. 

For a statistical ensemble of particles, we must 
average the free energy for even and odd particles 
and also over the possible distribution of the level 
spacing - EO and EO - & - I .  Thus we have, for the 
averaged free energy per particle, 

As will be discussed later, the distribution function 
P(A) has the form 

P(A) = c0nst.A " (8) 

for small values of A with possible values of n equal 
to 1, 2 or 4. As the result the heat capacity behaves 

at low temperatures satisfying the condition kT 4 8. 
There the heat capacity should be suppressed below 
the Sommerfeld linear law (2) .  Experimental verifi- 
cation of this prediction seems to have been 
unsuccessful up to date. 

In the presence of a weak magnetic field 
satisfying the condition, p~ H 4 8, namely that the 
electronic Zeeman energy is much smaller than the 
average spacing, the electron spin paramagnetism 

low temperatures, kT < 6, whereas that of an odd 
particle should be enhanced to a free spin para- 
magnetism obeying the Curie law. It should be noted 
that this exceeds the normal Pauli paramagnetism at 
such low temperatures. So much can be predicted 
without any calculation. More detailed behaviour of 
quenching or enhancement from the Pauli 
paramagnetism can be obtained with elaborate 
calculation [ S ] .  

The above mentioned prediction can be tested by 
experiments. The first successful experiment was 
done by Taupin [6] -for very small platelets of 
lithum produced in LiF by irradiation of neutrons 
and following heat treatments. An unshifted Li 173 
line was attributed to even particles. More recent 
observations for copper by Kobayashi et al. [7] and 
by Yee et al. [8] also demonstrate the anomalous 
spin susceptibility by an asymmetric shape of the 
NMR line, which is composed of a unshifted line 
due to even particles and a broad line with large 
shift due to odd particles. Also a direct evidence of 
the Curie law has been obtained by Bore1 et al. [9] 
for small part particles of lithum embedded in a 
matrix of CO2 or  Xe. 

In the first paper of the present author [3], the 
distribution P(A) was assumed for simplicity to  be 
purely random, namely 

This is a Poisson distribution and corresponds to 
the n = 0 case in eq. (8). Someone immediately 
pointed out to the author that this will not generally 
be the case because two crossing eigenvalues tend to 
repel each other so that n = 0 is to be expected. 
Later Gor'kov and Eliashberg [ l o ]  discussed this 
point employing the theory of random matrices first 
introduced by Wigner [ l  11  for a nuclear problem and 
developed further by Dyson and others [12]. 

Corresponding to an ensemble of particles, we 
may suppose an ensemble of random Harniltonians. 
We can take two different points of view ; One is 
the many-electron picture and the other is the 
one-electron picture. From the first point of view 
we consider many-electron Harniltonians, each 
defining electronic states of a particle as a whole. 
From the second point of view we consider 
one-electron ~amiltonians, each defining one- 
electron states in a particle. The former is more 
general than the latter, which is based on an 
approximation but, on the other hand, gives more 
information within its framework. In either picture, 
we distinguish the following three classes of 
statistical ensembles which are characterized by 
different values of the zero-limit power n in eq. (8). 

of an even particle should be totally quenched at a) Orthogonal Ensemble ; n = 1. If the Hamilto- 
nians have time reversal symmetry and the matrix 

(3 More rigorously, in eqs. (3) and (5) we have to include elementS can be made real by suitable choice of 
excitations to higher levels or from lower levels. Because of this 
complication, the proportionalitv constant in the relation (9) is an of such random Hamil- . . 
obtained by 'fairly- complicated-calculations [3, 53. tonian is called orthogonal, because it is invariant 
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under orthogonal transformations. In many-electron 
picture, particles with even numbers of electrons, 
and accordingly with integer spins, in zero magnetic 
field make this ensemble. In one-electron picture, 
this is an ensemble of orbital Hamiltonians with real 
random potentials in zero magnetic field. 

b) Symplectic Ensemble ; n = 4.  This corres- 
ponds to Hamiltonians which can be represented by 
matrices having elements in quaterions. The basic 
transformations is a symplectic group. Thus then 
orbital and the spin states are inseparably coupled 
to Kramers doublets by spin-orbit interactions, the 
time reversal symmetry being preserved. This 
applies to many-electron Hamiltonians for odd 
numbers of electrons, or to one-electron Hamilto- 
nians with strong spin-orbit coupling, both in zero 
magnetic field. 

c ) Unitary Ensemble ; n = 2. If the time-reversal 
symmetry is lost, Hamiltonians are generally repre- 
sented by hermitian matrices, which are subject to 
unitary transformations. This applies to many- 
electron as well as one-electron Hamiltonians in the 
presence of a magnetic field. 

It is easy to see how the power n in eq. (7) comes 
about for these different ensembles. In an orthogo- 
nal ensemble, two levels are close each other when 
the relevant part of the Hamiltonian matrix take the 
form 

for which the eigen value are 

Therefore the spacing A = 2 s is a random variable 
having two independent real random numbers, x 
and y. The probability to find A in a ring between 
the radii A and A + dA in the x-y plane is obviously 
proportional to A dA for smali values of A. Thus we 
have n = 1. For an unitary ensemble, the offdiago- 
nal elements of (1 1) are replaced by y = y' + iy" and 
y* = y / - i y "  , so that the eigenvalues are 

Since there are three independent real random 
variables, x, y', j', the power n is equal to 2. For a 
symplectic ensemble the Hamiltonian is composed 
of quaternions, or more explicitly the relevant part 
is of the form 

which has the eigenvalues 

x 0 y iz 

0 x iz* y* 
* Y  * - i z  - x  0 

- i z * y  0 - x  

and the corresponding pair of doublets. Since the 
number of independent variables in now five, the 
power n is 4. 

If the randomness is a resultant of a number of 
random causes, the matrix elements of a random 
Hamiltonians may be assumed to be nearly Gaus- 
sian. If further the variances were all the same, we 
would have 

P ( A )  = CA" e-""' (13) 
to generalize eq. (8) to larger values of A. This 
corresponds to Wigner's surmise [ll]. However, 
this law is not generally true, because the variances 
may be different for different types of random 
elements in the Hamiltonian matrices. For example, 
if for some reason y in the expression (11) has a 
much smaller variance than the diagonal elements, 
the power n in eq. (13) would be zero except for 
very small values of A. This case is not exactly 
Poisson but is close to it. If the applied field is 
weak, an orthogonal ensemble is more adequate 
than a unitary ensemble, into which the ensemble 
goes over when the magnetic field becomes strong 
enough to mix states with different characters with 
respect to time reversal. For a non-degenerate 
band, the orthogonal ensemble is suitable to 
describe the real situation as long as the spin-orbit 
interaction is not so strong as to admix the higher 
bands into the conduction band. For degenerate 
bands the situation is more complex and depends 
on energy and effective momenta. 

Gor'kov and Eliashberg [lo] pointed out that the 
infrared absorption of small metallic particles 
should reflect the effect of level repulsion by 
showing some sort of wriggles in the absorption 
curve. Experimental verification of this interesting 
prediction is, however, very difficult and a recent 
experiment [13] seems to indicate a strange discre- 
pancy between theory and experiment with regard 
to the intensity of absorption. 

At the beginning of this section, we have briefly 
discussed anomalies in the heat capacity and the 
magnetic susceptibility. This was based on a simple 
one-electron picture for orbital states. Since there 
are other possibilities of random energy levels as 
we have seen in the above, it is desirable to make 
the theory more precise. A very careful study was 
made by Denton et. al. [5], who calculated in a 
good approximation the heat capacity for the three 
ensembles and the spin susceptibility for orthogonal 
and symplectic ensembles taking account of distri- 
bution laws as predicted by the theory of random 
matrices. Differences between different ensembles 
are interesting, but they are not easily detectable by 
experiments. 

y = y l +  iy" 

z = z ' +  izN 

3. - To conclude this short review, some diverse 
points should be further commented on. 

It has been pointed out by Shiva [l4] and 
Sone [15] that even a weak spin orbit interaction 
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can significantly affect the anomalous spin parama- 
gnetism of small particles. We consider here, for 
simplicity, a metal with a non-degenerate band. A 
degenerate band case is somewhat complicated. In 
an infinite crystal, a Bloch function with wave 
number k and spin polarization along a chosen 
direction is written as 

where a k  and bk are appropriate periodic functions, 
a k  belonging mainly to the conduction band and b k  

mainly to upper bands coupled to the lower band 
through spin orbit interaction. If the spin orbit 
interaction is weak compared with band gaps, the 
amplitude of bk is much smaller than that of a k .  The 
function I,/J$ is predominantly with plus spin. The 
ratio of bk to a k  is a measure of the intrinsic mixing 
of spin states by spin orbit interaction. 

In the presence of a perturbation destroying the 
periodicity of a perfect crystal, the above- 
mentioned intrinsic mixing of spin states gives rise 
to non-vanishing matrix elements between Bloch 
functions with different k' s and different spin 
orientations. This is the Elliott mechanism [16], by 
which an electron flips its spin when it is scattered 
at impurities or at a surface. Elliott estimates the 
spin flip rate l / r s  as 

except for a numerical factor. The momentum 
relaxation rate ~ / T R  is roughly given by 

for the case of surface scattering in a particle with a 
linear dimension R. This is the frequency for an 
electron with velocity v bouncing back and forth 
within a particle. We may write the spin flip sate as 

in terms of an effective spin orbit interaction Bso, 
which may be called the Elliott interaction for 
convenience, and the density of states, 1 / S .  Consi- 
dering that 

8 m 1 / R 3  
we find 

, - 
Hsom l / R Z .  

For a large particle, in which electronic levels 
make a quasi-continuous spectrum, the Elliott 
interaction acts as an agency for spin relaxation. On 
the other hand, for very small particle, we expect 
the inequality 

s aH,, 
to hold. In the latter case, the Elliott interaction is a 
weak perturbation to the discrete one-electron 
quantum states in a particle. Given a particular kind 

of metal, there may or may not be a certain range 
of size of particles where the discreteness effect is 
still pronounced and yet the Elliott interaction a, 
is comparable to or even larger than the level 
spacing 6. In such a range of size, the anomaly of 
spin susceptibility depends on the parameter 

As this parameter increases, the anomaly will be 
suppressed. 

Taking the axis of spin quantization along an 
applied magnetic field, we write the wave functions 
of a Kramers doublet in a particle as 

4;=u, I +)+urn I - )  
(19) 

4: = u % I  - ) - v % I  - )  

including the effect of the boundary. For the matrix 
elements of spin operators, we have 

Spin magnetization induced by a magnetic field 
generally consists of two contributions ; one is the 
orientation part and the other is the polarization 
part. The orientation part is due to the diagonal 
elements of a, and gives rise to the anomalous spin 
paramagnetism of small particles as we have 
discussed before. The spin orbit interaction tends to 
reduce the effective Bohr magneton as seen in 
eq. (19), so that the Curie constant for odd particles 
will decrease as the parameter p increases. The 
polarization part is due to the off-diagonal elements 
of a, and is a perturbational effect in second order, 
an analogue to the Van Vleck term in atomic 
magnetism. This is independent of temperature and 
also of the odd-even parity of the electron number 
in a particle. It increases as p increases and 
approaches the normal Pauli paramagnetism in the 
limit of a large p, where the diagonal elements tend 
to zero and the orientation part vanishes. The 
qualitative feature is illustrated in figure 3. 

The line shape of ESR by conduction electrons in 
small particles is a subject closely related to the 
above-mentioned topics. This problem has been 
treated by Kawabata [17] some years ago. As 
eq. (19) indicates, the Elliott interaction produces 
different splits for different Kramers doublets in a 
magnetic field, so that the ESR signal should 
consists of a number of discrete lines, if there is no 
other cause for broadening, but the envelope of 
these lines is the effective shape of ESR. On the 
other hand as was mentioned already, the Elliott 
interaction causes spin relaxation and the accompa- 
nying broadening in large particle. An interesting 
question is how to bridge these two seemingly 
different pictures. 
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FIG. 3. - Spin paramagnetism of small metallic particles. The 
solid curves are for even particles and the dashed curves for odd 
particles. As the effective spin orbit interaction increases, the 
spin paramagnetism approaches the normal Pauli paramagne- 

tism. 

Another problem analogous to this is the broaden- 
ing of plasma resonance absorption of small 
particles [18]. The classical picture of this is to 
attribute the broadening to resistance for electronic 
current in a particle, which is larger for smaller 
particles because electron mean free paths are 
limited by the size as is meant by eq. (16). 
However, this picture is not adequate for small 
particles in which the presence of boundaries is 
already incorporated in the structure of electron 
wave functions and so the boundaries are no longer 
agencies for scattering. A better picture then would 
be to interprete the broadening as a result of 
coupling of a plasma mode to the individual 
electronic motion through the interaction of elec- 
trons with the electric field produced by the plasma 
oscillation. A broadened resonance is the envelope 
of a number of resonance lines due to such coupled 
oscillations. Or, one can look the coupling as a 
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