CONFORMATIONAL CHANGES IN HEME PROTEINS AND MODEL COMPOUNDS

K. Spartalian, G. Lang

To cite this version:

K. Spartalian, G. Lang. CONFORMATIONAL CHANGES IN HEME PROTEINS AND MODEL COMPOUNDS. Journal de Physique Colloques, 1976, 37 (C6), pp.C6-195-C6-197. 10.1051/jphyscol:1976641 . jpa-00216751

HAL Id: jpa-00216751
https://hal.science/jpa-00216751
Submitted on 1 Jan 1976

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
CONFORMATIONAL CHANGES IN HEME PROTEINS
AND MODEL COMPOUNDS

K. SPARTALIAN and G. LANG
Department of Physics, The Pennsylvania State University
University Park, Pennsylvania, U. S. A.

1. Introduction. — The zero-field Mössbauer spectra of hemoglobin (Hb) and myoglobin (Mb) in their oxygenated form exhibit a characteristic temperature dependence, the essential features of which are a quadrupole splitting which decreases with increasing temperature and an effective linewidth which reaches a maximum at an intermediate temperature. The oxygenated complexes of these proteins are EPR-silent and they are found to be diamagnetic at all temperatures. This indicates that the heme iron is in the low-spin ferrous (S = 0) state with the three t_{2g} orbitals fully occupied. The temperature dependence of the zero-field spectra cannot then result from electronic excitation into unoccupied orbitals. An attractive explanation of this is conformational excitation, involving the motion or displacement of some part of the molecular structure in the neighborhood of the iron. This could redistribute charge without unpairing electrons. The relative flexibility of protein originally led to a suggestion that distortion of the peptide chain near the heme might be involved [1]. This explanation of the temperature dependence of ΔE was, however, almost certainly ruled out by the Mössbauer emission measurements of Münck et al. [2] who observed the transient oxygenated iron imidazole heme formed in the decay of the corresponding 57Co complex, and found a quadrupole-split spectrum whose behavior closely followed that of oxyhemoglobin. This finding seems to implicate either the oxygen or the heme, probably the former since no other ligand shows such effects. The detailed nature of the implied oxygen motion is of interest because of the light it could throw on the electronic structure of the complex and because of its possible relevance to biological function.

The study of relatively small non-protein models has traditionally been of importance in efforts to understand the behavior of the large biological molecules. A recent successful simulation of the oxygen binding sites of hemoglobin is described in reference [3], where the synthesis and characterization of a series of compounds of iron, meso-tetra ($\alpha, \alpha, \alpha, \alpha$-o-pivalamidophenyl) porphyrin, are presented. With a variety of bases attached to the iron on the side opposite the picket fence structure, these are capable of binding O_2 reversibly as the sixth iron ligand. Our Mössbauer measurements of the oxygenated model indicate a close similarity to oxymyoglobin with respect to isomer shift, quadrupole splitting, and lineshape over a range of temperature. X-ray studies of the N-Me-imid oxygenated complex show a statistical disorder in oxygen position at room temperature [4]. We believe this is a dynamic thermal distribution and have accounted for and analyzed the observed Mössbauer spectra in terms of it [5]: In the present paper we discuss the relevance of such an analysis to the oxygen binding sites in hemoglobin and myoglobin.

2. Experimental. — The preparation of samples is described elsewhere [3, 6]. The spectra at 4.2 K were recorded by keeping the sample immersed in liquid helium in a cryostat of a design described elsewhere [1]. The temperatures between 4.2 and 195 K were achieved with a variable temperature insert in which the sample was mounted inside a vacuum can immersed in-the
helium bath. The temperature was maintained by an electronic controller and monitored with a thermocouple (0.03 at. % iron-gold vs. chromel).

The Mössbauer spectra were taken in horizontal transmission geometry using a constant acceleration spectrometer operated in connection with a 256 channel analyzer in the time scale mode. The source was kept at room temperature and consisted of 50 milli-curies of 57Co diffused in rhodium foil. The spectrometer was calibrated against metallic iron foil and zero velocity was taken as the centroid of its room temperature Mössbauer spectrum. In calibration spectra linewidths of about 0.23 mm/s were normally observed.

3. Results. — Figure 1 presents the zero-field Mössbauer spectra of the N-Me imid model compound (left) and oxyhemoglobin (right) at representative temperatures over the relevant range. Comparison between the two series of spectra yields similarities and differences upon examination of the quadrupole splitting and the lineshape.

The quadrupole splitting ΔE is temperature dependent and decreases with increasing temperature for both systems. However, although at 4.2 K the quadrupole splitting for the model compound and HbO$_2$ is nearly the same, the value at the high end of the temperature scale for the protein is considerably higher than the corresponding value for the model compound.

The lineshape for the two systems exhibits the same behavior at low and intermediate temperature ($T \lesssim 160$ K); the lines are relatively narrow and Lorentzian-like at low temperature while at intermediate temperature ($70 \lesssim T \lesssim 160$ K) they become broad and asymmetric in the same fashion. At the high end of the temperature scale the asymmetry in the lines disappears, the lines in the model compound spectra tend to become narrow again, almost approaching their natural width, while those in the HbO$_2$ spectra remain broad at about twice the natural linewidth.

The results of Lorentzian fits to a variety of related compounds are shown in figure 2, where the quadrupole splittings are plotted as a function of temperature for the heme proteins and model compounds mentioned in the text. The data for cytochrome P450 where taken from reference [9].

4. Discussion. — The zero-field spectra from the N-Me imid model compound have been successfully analyzed and accounted for in terms of a dynamic relaxation model [5] based on the published crystal structure [4] of this compound. Briefly, this model is as follows. The dioxygen molecule occupying the sixth ligand position above the heme plane may make transitions between four possible orientations or conformations as observed in the crystallographic studies. These orientations are equivalent in opposing pairs that are separated in energy by an amount E_0; each pair produces a different electric field gradient (efg) at the site of the nucleus. As the temperature is varied, the oxygen molecule relaxes between orientations with a characteristic relaxation rate that depends...
on temperature. Furthermore, the contribution of each orientation to the efg at a given temperature must be weighted by the appropriate Boltzmann factor.

The above model was mathematically formulated by adapting relaxation theories found in the literature [7] and the experimental spectra were least-squares fitted by computer to obtain the pertinent parameters. The solid lines in figure 2 are the results of such fits. The details of the calculation can be found in reference [5]. It suffices to mention here that the implicit assumptions in the above model are that (a) the observed negative principal component of the low temperature efg lies in the heme plane, (b) the component normal to the heme plane, along which the z-direction is defined, is the same for both conformational states, (c) the efg at the nucleus for each conformation is different, i.e. the efg is not bodily rotated about the z axis as the oxygen relaxes between the two conformations.

Since the temperature behavior of ΔE and the lineshape in the HbO2 spectra follow qualitatively the behavior of the model compound, it is safe to conclude that oxygen motion between conformations also occurs in the protein. On the other hand, there is no need to conclude that the detailed nature of the conformational excitation must be similar. In fact, a straightforward application of the above model to the HbO2 problem fails to yield a satisfactory set of parameters and thus implies that the nature of the excitation is somehow different. This should hardly be surprising in view of the fact that x-ray results [8] indicate that the O2 molecule in oxyhemoglobin is sterically hindered from completing a full circle about the Fe-O axis; instead it may wobble within an angle of 45°.

Attempts to account for the HbO2 zero-field spectra in terms of a model whereby the efg bodily rotates with the oxygen within 45° about an axis perpendicular to the heme plane were unsuccessful mainly because the calculated quadrupole separation ΔE at high temperature was far less than the observed value. If the bodily rotation of the efg requirement is relaxed and we assume instead that each O2 orientation results to a different efg at the nucleus, then it becomes possible to construct a large number of models for oxygen relaxation, all agreeing with the zero-field spectra. In short, we believe that the mathematical formulation of a relaxation model for the zero-field spectra of HbO2 is a risky endeavor if additional information about the possible O2 orientations is not independently provided. It is, however, reasonable to claim that the sterically hindered O2 motion is responsible for the relatively high value of ΔE at high temperature.

We now turn our attention to the other, less extensively studied, systems whose quadrupole splittings are also shown in figure 2. A striking deviation from the norm is the oxygenated complex of cytochrome P450 studied by Sharrock et al. [9] which shows little temperature dependence of ΔE. In this enzyme the axial ligand is assumed to be sulfur and it might be argued that it is the sulfur which somehow impedes the oxygen motion. In seeming contradiction to this is the temperature dependence of ΔE of the thioether model compound in which the axial ligand is known to be sulfur. In fact, the latter model compound seems to mimic the ΔE temperature dependence of HbO2 and MbO2 much closer than the N-Me imid model compound. This agreement may be fortuitous or it may show that indeed the sulfur ligand hinders the oxygen motion but not altogether. Then, one may further speculate, in the case of P450 there may be additional steric hindrances, possibly atoms neighboring the sixth ligand position, that define a unique oxygen orientation.

A final note may be added concerning lineshapes. It is certainly plausible to link the temperature dependence of the lineshape with oxygen relaxation. In cytochrome P450 there is no significant variation of the linewidth with temperature [9] as expected. The difference in linewidth between the model compound and HbO2 at high temperature (cf. Fig. 1) may be an artifact introduced by the state of the samples. The protein was in frozen solution and therefore susceptible to solvent phase-transition effects that may broaden the lines. Such effects are of course non-existent in the powder sample of the model compound.

Acknowledgements. — This work was supported by NIH Grant HL16860 from the National Heart and Lung Institute. The collaboration of J. P. Collman of Stanford University and T. Yonetani of the University of Pennsylvania is gratefully acknowledged.

References