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R6sumB. - Ces dernikres annkes des theories faisant appel aux dislocations ont ktk proposkes 
pour expliquer la fusion, comme modkles de l'ktat liquide et pour calculer la viscositk des verres. 
Le modkle de Mott-Guerney est particulikrernent digne d'intkret a cet kgard qui dkcrit un liquide 
comme ktant constituk par un polycristal dont la taille de grain (donc la taille du rkseau de dislo- 
cation) est de I'ordre des dimensions atomiques ainsi que la dkmonstration par Kotze et Kulhmann- 
Wilsdorf suivant laquelle l'knergie interfaciale est proportionnelle a l'knergie de joint de grain pour 
de multiples klkments. 

A la suite de ces travaux, on peut envisager l'existence d'un modkle relativement simple pour 
expliquer la cristallisation et la solidification vitreuse. 

Pour une densitk a saturation, les dislocations sont, dans un liquide, en mouvement constant 
et la structure microscopique de joint de grain qu'elle forme est en perpetuelle holution par inter- 
action dislocation-dislocation. 

Lorsque le liquide est refroidi au-dessous du point de fusion, le minimum d'knergie libre est en 
faveur de la cristallisation et les grains ayant une taille supkrieure a la taille critique de germination 
vont grossir aux dkpens des grains environnants. Si le processus ne se produit pas, les dislocations 
subsistent et un verre va se former. 

Expkrimentalement, le choix entre ces deux alternatives dkpendra, pour un matQiau donnk, 
de l'intensitk des mouvements de dislocations pendant la pkriode critique ou la nuclkation et la 
croissance deviennent thermodynamiquement favorables. Donc l'ktat vitreux aura des chances de se 
former si le liquide est particulikrement visqueux ou si la vitesse de refroidissement est particulik- 
rement grande. 

Abstract. - In recent years, dislocations have been involved in theories of melting, in models 
of the liquid state, and in calculations of the viscosity of glasses. Particularly noteworthy are the 
Mott-Gurney model of a liquid as a polycrystal with a grain size (i. e. a dislocation network size) 
of near-atomic dimensions, and the demonstration by Kotze and Kuhlmann-Wilsdorf that the 
solid-liquid interfacial energy is proportional to the grain boundary energy for a number of ele- 
ments. These developments suggest the possibility of a relatively simple picture of crystallization 
and glass formation. In the liquid state dislocations, at the saturation density, are in constant 
motion and the microscopic grain boundary structure that they form is constantly changing due 
to dislocation-dislocation interaction. As the liquid is cooled below the melting point the free 
energy favors the crystalline form and grains larger than the critical nucleation size at any given 
temperature will grow at the expense of the surrounding grains. If this process does not occur the 
dislocations will remain and a glass will be formed. Just which of these alternatives will actually 
be observed for a given material will depend especially on the amount of dislocation motion that 
can take place during the critical period when nucleation and growth becomes favored thermody- 
namically. Thus the glassy form will have a better chance of being formed if either the liquid is 
particularly viscous or if the cooling rate is particularly rapid. 

1. Introduction. - The purpose of this paper is to described in the next section, and the section following 
describe a model which provides a unified view of the that is devoted to a review of pertinent data from 
phenomena of melting and glass formation, and to several phenomena which, when suitably extrapolated, 
document supporting evidence culled from a variety of is found to have a bearing on the value of the glassy 
other phenomena some of which are not normally and liquid states. There then follows a discussion of 
linked with either of these processes. The model is those aspects of nucleation theory that are germane to 
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the problem, and finally a description is given of a two- 
dimensional computer simulation of the rapid quench- 
ing of a liquid which illustrates some of the main points 
of the model. 

The central and unifying idea of the model is that 
dislocations are implicated in melting and that the 
dislocation concept, in a generalized form, is valid in 
both the liquid and glassy states. Theories linking 
dislocations to the melting transition have appeared at 
various times in the literature during the last forty 
years. Mott and Gurney [l] suggested that liquids are 
essentially polycrystalline solids in which the grain 
diameter is no larger than a few interatomic spacings. 
Because grain boundaries can be regarded as arrays of 
dislocations, the Mott-Gurney picture of a liquid is equi- 
valent to one of a crystal saturated with dislocations, 
Mizushima [2], Siol [3] and Ookawa [4] have subse- 
quently enlarged on the idea that melting occurs by the 
spontaneous generation of dislocations. Kuhlmann- 
Wilsdorf [5] has developed that theory to the point that 
quantitative agreement is obtained with experiment, 
and has proposed a specific dislocation configuration 
consisting of dipoles. Kotze and Kuhlmann-Wils- 
dorf [6] have explored the possibility that the disloca- 
tion concept is applicable to the liquid state by showing 
that the pair distribution function changes from that of 
a crystal to that of a liquid if a sufficiently large number 
of dislocations are present. Although there has as yet 
been no experimental confirmation of the implication 
of dislocations in melting, computer simulations of the 
transition in both two-dimensional [7] and three- 
dimensional 181, [g], [10], [l l ]  close-packed crystals 
have shown the predicted spontaneous dislocation 
generation. These computer models also give the 
correct change in volume, energy and entropy and they 
correctly predict the melting point. 

Gilman [l21 has discussed the possibility of describ- 
ing the viscous flow of glasses in terms of dislocation 
motion. He finds that dislocations in a glass would be 
unlike those encountered in crystals in that the Burgers 
vector would not be constant along the individual dislo- 
cation lines. Apart from this generalization, however, 
the theory of the strain rate follows the same principles 
as in crystals and good agreement with experiment is 
obtained. 

Dislocations have thus been linked, theoretically at 
least, to melting, to the liquid state, and to the glassy 
state. This is consistent with the fact that a glass is 
produced by supercooling a liquid. Moreover, the 
generalization to a variable Burgers vector might be 
expected to occur at a saturation density of disloca- 
tions, when the strain fields of the individual disloca- 
tions overlap considerably. 

2. The model. - The central idea of this communi- 
cation is that the concept of the dislocation, with 
suitable generalizations, provides a valid and viable 
method of describing the disorder present in both 
liquids and glasses. Evidence for the implication of 

dislocations in melting has already been cited. It is 
found that this phase transition is accompanied by the 
spontaneous generation of dislocation dipoles and 
that the concentration of these, when the transition is 
complete, is such that adjacent dislocation cores are 
mutually contiguous. It is debatable whether the liquid 
should therefore be described as a crystal saturated 
with dislocation cores. This is because the term core 
refers to the central part (with a diameter of three or 
four Burgers vectors) of a dislocation which is conside- 
rably larger in total extent, the region outside the core 
being crystalline material in which the strain does 
not exceed the elastic limit. In the above-outlined view 
there is no such crystalline material beyond the core 
because of the extremely high dislocation density. It 
might therefore be more appropriate to refer to the 
liquid state as corresponding to a saturation density of 
pseudodislocations, the defining characteristic of the 
latter being the familiar more open central region just 
as with the ordinary dislocation. The volume change 
on melting is quantitatively accounted for by the 
introduction of the dislocations, as has already been 
cited, while the sharp drop in viscosity (typically by a 
factor of 10" or so) is explained by the high mobility 
of the pseudodislocations. (One can regard the relati- 
vely open regions at the centers of the pseudodisloca- 
tions as being instantaneous concentrations of the free 
volume.) In the liquid the pseudodislocations are in a 
constant state of motion and they are constantly 
impinging upon one another and interacting to form 
new pseudodislocations. It is important to note here 
that it is possible to retain something of the idea of 
positive and negative dislocations in the liquid state in 
that a knowledge of the instantaneous positions of all 
the atoms would allow one to determine on which side 
of the pseudodislocation (relative to a fixed coordinate 
system) there is compression and on which side there is 
dilation. Because of the interactions between the 
pseudodislocations there will of course be a finite 
probability that dislocation-free regions (i. e. embryonic 
crystallites) could exist momentarily, but because the 
temperature is above the melting point these crystallites 
would quickly melt due to the spontaneous generation 
of further dislocations in them. (This process arises 
because the free energy of the dislocation becomes zero 
at the melting point.) As the temperature of the liquid 
is cooled below the freezing point, crystallization will 
occur if the pseudodislocations can be eliminated. 
This will be achieved by their interaction as mentioned 
earlier, but now without the spontaneous generation 
of new dislocations in the embryonic crystallites 
because the temperature is below the melting point. The 
driving force for the elimination of the dislocations 
arises because the dislocation free energy rises with 
increasing degree of supercooling. 

The rate of crystallization, will depend upon the 
pseudodislocation mobility, so that the rate will be 
lower for highly viscous liquids. The crystalliza- 
tion process can also be bypassed by very rapid cooling 
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because the dislocations would then not have sufficient 
time to move even if they were mobile. If the elimina- 
tion process is not completed then dislocations will 
remain in the resultant crystal. If the elimination 
process either does not take place at  all, or if it occurs 
to only a limited extent, then the resultant solid will be 
either as dislocated as was the liquid or nearly so. Such 
a solid, saturated with dislocations, would be called a 
glass according to the model advocated in this commu- 
nication. The dislocations would of course not be as 
mobile as in the liquid, and their mobility would 
decrease with decreasing temperature, becoming 
finally zero at the glass transition temperature. 

This model suggests a simple explanation of several 
of the basic experimental observations on glasses. To 
begin with the connection between volume change and 
dislocation content taken together with the present 
model shows immediately why the volume-temperature 
curve has the observed form shown in figure 1 (which is 

FIG. 1. - Schematic illustration of the temperature dependence 
of the volume of the glassy, liquid, and crystalline states [13]. 

The model also helps one to understand the slope of 
the corresponding curve for the temperature depen- 
dence of the specific heat. In contrast to what is observ- 
ed to occur with the volume, the specific heats at  
constant pressure of a crystal and a glass of the same 
material differ only slightly below the glass tempera- 
ture. This is illustrated by the curve for glycerol shown 
in figure 2a [13]. The specific heat is of course deter- 

FIG. 2a. - Molecular heat of glycerol in the liquid, glassy, and 
crystalline states [13]. a, b, c, d and e represent liquid, supercooled 
liquid, glass, crystal, and expected form of equilibrium curve for 

supercooled liquid respectively. 
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between the curves for the liquid and the glass is that 
the latter Z(w) becomes zero at w = 0 just as for a 
crystal, because in both cases there is no marked 
diffusion. In the presknt model the diffusion in the 
liquid state is due to the movement of the pseudo- 
dislocations while the lack of diffusion in the glassy 
state is due to the fact that the pseudodislocations are 
immobile below the glass temperature. The less pro- 
nounced differences between the crystal and glass Z(w) 
at finite w apparently have a relatively negligible effect, 
and so difference between the specific heats of crystal 
and glass is fairly small (although the value for a glass 
is slightly higher). 

3. Grain-boundary-dependent phenomena in the limit 
of very small grain size. - Having now outlined the 
basic concepts of the unified theory, and before going 
into the testing of the ideas contained in it, we will 
consider some consequences of the view that liquids 
and glasses can be looked upon as polycrystals in which 
the grain size is of near-atomic dimensions. In each 
case we will describe briefly the value of a phenomenon 
that is observed in a polycrystalline solid, and whose 
characteristic parameters are a function of grain size, 
and then we will go on to discuss the implications for 
these phenomena of an, atomic-scale grain size. 

3.1 CREEP IN POLYCRYSTALS AND THE VISCOSITY 
OF LIQUIDS AND GLASSES. - There are several different 
types of creep, depending on the stress level and tempe- 
rature, but they all have it in common that they involve 
time-dependent dimensional changes of a specimen 
under constant stress. High temperature creep, which is 
observed in the vicinity of the melting point, has been 
analysed by Nabarro and Herring [l71 and has been 
found to be due to selectively directional self diffusion. 
The underlying idea is that stress causes local deforma- 
tion of the lattice and thereby alters the vacancy for- 
mation energy. If there are stress inhomogeneities in a 
specimen, this will give rise to directional diffusion as 
the vacancies seek to migrate to positions of lower 
energy. In a specimen under unidirectional tensile 
stress, for instance, the diffusion is such as to promote 
elongation of the specimen. The Nabarro-Herring 
equation relates the viscosity, v,, in the solid state, to 
the net distance, R,, through which the vacancies move 
in travelling from a high-stress source to a low-stress 
sink. It is 

v s  = R: kTl(aQ0 D,) (1) 

where Q0 and D, are the atomic volume and solid-state 
self diffusion coefficient respectively. a is a constant 
whose value can be shown to be about 4. The form 
of (1) is of course reminiscent of the Stokes-Einstein 
expression [l71 for liquid viscosity, v,, which is 

where DL is the liquid-state self diffusion coefficient 
and where d, is the diameter of an atom in the liquid. 

We must now ask what becomes of (1) if we accept 
the model described in this paper. The grain size is 
determined by the dislocation density and the latter is 
so high that the mean nearest-approach distance 
between dislocations is just twice the core radius, r,. 
Thus for our model liquid we have 

RL X 2 r, (3) 

and the core radius can be written in the form 

r; = Pd, (4) 

where do is the nearest-neighbour distance and P is a 
constant which lies between 1 and about 3. 

We may also write 

where y will depend upon the crystal structure ( y  = 1 1 4  
for the FCC and HCP structures ; y = 413 J3 for the 
BCC structure). Using (3), (4) and (5) in (1) we obtain 
the viscosity of our model liquid 

VL = 4 P2 kTl(ayd0 DL) 1 (6) 
where it is now assumed that DL will be the diffusion 
coefficient for diffusion along dislocations (i. e. the 
socalled pipe difu~ion). The similarity between eq. (6) 
and eq. (2) is striking. Indeed they differ only by a small 
numerical factor. Furthermore, the use of eq. (1) for 
the crystalline state and, with the appropriate changes, 
for the liquid state also allows one to derive an expres- 
sion for the ratio of the liquid and crystal viscosities. 
This is simply 

Typical effective grain sizes in polycrystals follow from 
the fact that the dislocation density in well annealed 
crystals is usually of the order of 104 cm-'. Thus 
R,/RL = 106, using eq.'(3). Moreover, the ratio of the 
diffusion coefficient in the two states has been measured 
for a wide range of substances and one finds that 
DL/D, 104 (see also the next section). Hence one 
finds that 

YSIYL " 10l6 (8) 
which is in excellent agreement with experiments on an 
equally wide range of materials. We see, therefore, that 
the present model is capable of explaining in a quanti- 
tative manner the most striking difference between the 
crystalline and liquid states. 

There remains the question of the difference between 
the viscosities of the liquid and glassy states of any 
given substance. This arises, according to the present 
model mainly from the fact that the glassy state exists 
at a lower temperature than the liquid and that this 
implies a lower diffusion coefficient. Following eq. (7) 
we can write, where the subscript G stands for glass, 

PIGIVL = (RGIRL)~ (D~IDG) (9) 
from which we see that any change in the effective grain 
size, in going from the liquid to the glass, will also have 
an effect on the viscosity. If there is a certain amount of 
dislocation-dislocation-interaction which leads to loss 
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of dislocations during the cooling down to the glassy 
state (which indeed has already been suggested earlier 
in this communication) then R,/R, will be greater than 
unity and the glass will be more viscous. The main 
reason for the higher viscosity of the glass, however, 
will be due to its lower diffusion coefficient. This will 
have the form 

D = D, exp(- E,/kT) (10) 

where both D, and E,, the diffusion constant and diffu- 
sion activation energy respectively, now refer to the 
pipe diffusion mode of mass transport. The temperature 
dependence of D is solely responsible for the tempera- 
ture dependence of v, so long as the temperature is low 
enough to prevent appreciable dislocati~n motion, 
lowering of the dislocation density, and increase in R,. 

3.2 SUPERPLASTICITY OF CERTAIN ALLOY POLYCRYS- 

TALS, DIFFUSION-ACCOMMODATED DEFORMATION, AND 

THE FLOW OF GLASS. - In recent years a steadily- 
increasing number of alloys have been discovered 
which have the remarkable property that they can 
tolerate large tensile strains, frequently up to several 
thousand percent, without necking. Numerous inde- 
pendent studies of these alloys, both in theory and expe- 
riment, have elucidated the underlying physical 
principles of this unusual behaviour. It is found that a 
necessary condition for the manifestation of super- 
plasticity is a sufficiently small grain size (typically a 
few microns, or less than this), and that during super- 
plastic deformation the individual grains behave as if 
they had a central undeformable core and an outer 
mantle in which both plastic deformation and diffusion 
occur simultaneously. 

One of the most technologically important properties 
of glass is that it too deforms plastically without 
necking. According to the model described in this paper 
glass also can be looked upon as a polycrystalline 
aggregate with a grain size that is sufficiently low that it 
would be expected to exhibit superplasticity. Indeed the 
grain size is so small in a glass that there could hardly 
be any core in the average grain. Glass would therefore 
represent a limiting case of superplastic solid in which 
the mantle regions filled all the available space. 

A recent analysis by Ashly and Verrall [l81 has shown 
that the superplastic strain rate is given by 

l = (98 Q,/kTl2) (a- 0.72 r/l) Ds(l +n6DB/1D,) (1 l) 

in which l is the grain diameter, r the grain boundary 
free energy, o the tensile stress, 6 the thickness of the 
mantle, D, is the grain boundary diffusion coefficient, 
and where the other symbols have already been defined. 
In the case of the glass model advocated here, l would 
be simply 2 6 since there is no core. Since DB is consi- 
derably larger than D, (e. g. D,/D, = 6.6 X 103 for 
lead at its melting point [IO], [20]) this permits simplifi- 
cation to the form 

which is of course again reminiscent of the Stokes- 
Einstein and Nabarro-Herring equations, except for the 
final stress-dependent term. Regarding the latter, one 
notes that in metals r is usually of the order of 
100 ergs cm-2 while l in the present model is of the 
order of 2 X 10-7 cm. Superplastic flow stresses are 
typically 10-~-10-' times the shear modulus, and the 
latter is typically 101 dynes cm-'. The two terms 
inside the remaning bracket in eq. (12) are therefore of 
comparable magnitude so that the viscosity will depend 
upon the exact magnitude of a. This is also observed in 
the original Ashly-Verrall analysis. 

3 . 3  THE GRAIN-SIZE DEPENDENT STRENGTH OF POLY- 

CRYSTALS AND THE STRENGTH OF GLASS. - Polycrystal- 
line specimens are invariably stronger than single 
crystals, when tested at temperatures bdow the range at 
which creep effects begin to dominate. Not surpri- 
singly this fact has been attributed to the power of 
grain boundaries to impede the free movement of 
dislocations and thus to inhibit plastic deformation. 
This being the case, one would expect that the greater 
the concentration of grain boundaries the greater would 
be the strength enhancement effect. Experiments on a 
wide variety of metals and alloys have endorsed this 
view and Hall and Petch have shown that the enhance- 
ment follows the relationship 

o = a. + ~ 1 - l ~ '  (13) 
where a is the flow stress corresponding to a grain 
diameter l and o, is the flow stress for infinite grain 
diameter. The value of the constant, K, is for alumi- 
nium, for instance, 7.4 X 10' dynes cm-' pmii2 [21]. 
The form of the equation has also been derived analy- 
tically on the basis of a model in which the grain 
boundary acts as a barrier against which the disloca- 
tions in a deforming grain must pile up. When the 
number of dislocations in the pile up is sufficiently 
large, the stress level just ahead of the leading disloca- 
tion in the pile is sufficiently great to transmit stress 
across the boundary and into an adjacent grain. The 
adjacent grain can then begin to deform. 

In the model described in this paper, the effective 
grain size is very small. This would imply a very high 
strength, and it is noteworthy that glasses are in general 
stronger than polycrystalline metals. For instance, the 
flow stress of aluminium for a grain size of 100 pm is 
about 2 X 108 dynes cm-2 whereas the tensile strength 
of drawn silica is about 7.3 X 10" dynes cm-' [22]. In 
fact glasses exhibit a strength that approaches the ideal 
theoretical value ; a property which is exploited in the 
industrial use of fibre-glass. It is interesting, in this 
connection, to use eq. (1 3) to derive a value of the grain 
size, l*, that would be required to produce a flow stress 
equal to the ideal value of G/2 z, where G is the shear 
modulus. Using again the case of aluminium we have 
G = 2.55 X 10'' dynes cm-', and since o, is negli- 
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Thus we would expect ideal theoretical strength to be 
exhibited by a polycrystal with a grain diameter of 
about two nearest-neighbour distances. This is just 
about the grain diameter that is predicted by the model 
presented in this paps ,  since the model invokes a grain 
diameter of about twice the dislocation core radius, 
and the latter is about three nearest-neighbour dis- 
tances in typical metals. 

3 .4 GRAIN GROWTH AND THE POSSIBILITY OF BYPASS- 

ING CRYSTALLIZATION TO PRODUCE A GLASS. - When a 
polycrystalline material is heated to sufficiently high 
temperature it is found that the average grain size starts 
to increase. This is because grain boundary migration 
causes some grains to grow at the expense of others. 
The driving force for the migration is the local diffe- 
rence in stored energy between the two sides of the 
boundary and this in turn is due to local differences in 
the dislocation concentration. Electron micrographs 
have been published in which an advancing grain 
boundary points in the direction of maximum disloca- 
tion density while leaving behind in its wake a region 
almost devoid of dislocations. 

In the present model the crystallization process has 
been characterized as one of the removal of the pseudo- 
dislocations as the liquid is cooled below the melting 
point. This removal is equivalent to grain growth, and 
it follows from the model, that if the grain growth 
process can be bypassed, a high dislocation density will 
be frozen into the material and a glass will result. The 
validity of such a view would depend upon a calcula- 
tion of the rate of grain growth for grains having the 
very small diameter envisaged in the present model. 
The principles governing the rate of grain growth have 
been discussed in a number of publications [23,24,25], 
some of which have expressed the view that the process 
is peculiar in that it does not obey the normal laws of 
nucleation and growth. The latter laws arise in a physi- 
cally quite transparent manner. The driving force for 
growth is proportional to the volume swept out by the 
moving boundary while the opposing force derives 
from the increasing area of the growing grain. At small 
radii the surface effect predominates, but beyond a 
certain grain radius the volume term wins and the 
grain grows spontaneously. It would be disconcerting if 
the otherwise ubiquitous nucleation and growth law did 
not apply to the obvious candidate under discussion 
here. Fortunately, it transpires that an apparent 
mistake in the algebra of the earlier publications has 
led to the erroneous conclusion that nucleation and 
growth theory is not relevant to the present problem. In 
appendix A of this paper the error is corrected, and it is 
shown that grain growth is not the exception that it was 
thought to be. In the next section the theory of nuclea- 
tion is applied to the question of crystallization and 
glass formation in both three and two dimensions. The 
latter is included both because it differs in certain 
significant respects from the three dimensional case, 
and also because it can readily be checked pictorially in 

a molecular calculation. Such a calculation is presented 
in the penultimate section of the paper. 

4. Application of nucleation theory to glass forma- 
tion. - According to the model promoted in this paper 
there is nothing special about the instantaneous struc- 
ture if a glass apart from its lack of crystallinity and the 
fact that its disorder can be described in terms of 
pseudodislocations. When a liquid is cooled below its 
freezing point the onus is on the crystalline form to 
establish itself, and if it fails to do this a glass will 
ultimately result by default. The driving force for the 
phase change is the difference in free engrgy between the 
stable (crystalline) phase and the metastable (supw- 
cooled liquid) phase. The amount of material that is 
transformed in a given period of time will depend upon 
both the rate of formation of crystalline nuclei and 
their rate of growth. 

In the supercooled liquid the equilibrium concentra- 
tion of crystalline embryos of a given size is determined 
by the difference in free energy between the embryos as 
units and the corresponding number of atoms in the 
liquid phase. This is given by 

4 
AG* = 4 nr2 y,, + - nr3 AG 

3 (1 5 )  

where r is the radius of the embryo, y,, the crystal/liquid 
interfacial energy, and AG is the difference in free 
energy between the crystal and liquid phases for the 
number of atoms in unit volume of the embryo. It is 
clear that the AG versus r characteristic has a maximum 
which defines the critical radius r, (and hence critical 
number of atoms) together with the corresponding for- 
mation energy for the critical cluster size AG:. For 
given values of P and T the system will adapt an equili- 
brium distribution of embryos, the number present 
with size n being given by 

N,, = N' ( )  - exp ( - ":F)) - (16) 

N I  is the number of liquid atoms that remain outside 
the cluster (i. e. remain as clusters each having a single 
atom). N' is given by 

m 

N' = 2 N,, 
n = l  

and is the total number of clusters (including those 
with a single atom). 

For 
m 

we obtain the classical expression 

The number of critical nuclei (clusters containing n, 
atoms) is therefore given by 
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From this the nucleation rate I can be found by produce a two-dimensional glass by computer simula- 
multiplying N, by the net flux of atoms across the cri- tion. It is therefore appropriate to repeat the develop- 
tical nuclei's interface. Thus ment given above for the two-dimensional case. 

Eq. (15) and (23) become 
I = Aexp - - ( exp (- S) (20) AG* = 2 +ry + +nr2 AG (two dimensions) (26) 

where A is a constant which is normally written as 
kTN,/h (h being Planck's constant), and AGD is the 
activation energy for diffusion of atoms from the liquid 
phase to the nucleus interface. 

It is customary to use a linear approximation for 
AG (= AH - T AS) and insert AS = AH/TM where 
TM is the melting point. This gives 

Inserting this in the expression for the formation 
energy of the critical nucleus (found by setting 
a AG*/ar = 0) we have 

and hence 

The nucleation rate is thus 

kT 16 T; 
1 = N ,  - exp (- - AA) (24) 

h 3 AH~(T,- T)' k~ k~ 

this being valid only if the transient period that prevails 
as the system changes to a new equilibrium distribution 
is short compared with the period of observation. 

If one desires information on the distribution of 
embryos, and its time dependence, it is necessary to 
study the temporal evolution of the system. Assume 
that a system which is initially in equilibrium at a 
temperature T, > TM is suddenly cooled to a tempera- 
ture T, < TM and then held there. The problem is one 
of determining how the distribution of embryos 
N;(T,;O) changes with time (Nn(T2, t ) ) .  This problem 
has been analyzed by Kantrowitz and Zeldovitch 
(see ref. [25], p. 403). It is found that the transient 
change in the distribution of embryo sizes can' be 
expressed as 

N,(T2, t )  = N: exp(- z l t )  ( 2 5 ~ )  

where Z is the Zeldovitch factor [37] and S, is the 
surface area of the critical nucleus. 

The relative simplicity with which defects can be 
detected in two-dimensional systems makes them a 
suitable subject for study in their own right. Two- 
dimensional studies of melting were referred to earlier 
in this paper, and the next section describes attempts to 

AG: = "' T"- (two dimens~ons) (27) 
I AH I ( T ~  - T ,  

while for the nucleation rate we find 

(two dimensions). (28) 

The equations for Nn and N, are the same as for three 
dimensions but with the appropriate substitutions for 
two dimensions of the quantities given above. 

From the foregoing analysis it will be apparent that 
there are two quantities that are of interest when 
considering whether or not. crystallization can be 
bypassed under a given set of experimental or simula- 
tional conditions. These are the distribution of embryo 
sizes as a function of temperature and the nucleation 
rate for embryos of critical size as a function of tempe- 
rature. Figure 3 shows N,(T) for three dimensions and 

FIG. 3. -Equilibrium distributions of embryos for a three- 
dimensional Lennard-Jones system. 

one sees, for instance, that the atomic concentration of 
13-atom crystalline clusters at TM is about 10-5. One 
also sees that 13 is obviously less than the critical 
cluster number for temperatures near T*. At TM the 
critical cluster size is of course infinite. As the specimen 
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is cooled, the absolute concentrations of the clusters 
grow, but the relative increase is higher for the larger 
clusters. This is the case for all clusters above the size 
of three which we will term the cross over size. The 
cross-over size can readily be found by finding that 
value of r for which dN/aTis zero, and substituting the 
various quantities derived earlier. The results are 

rcRoss = - 3 y/AH (three dimensions) (29) 

rm0, = - 2 .y/AH (two dimensions) (30) 

in which A H  is negative as defined. Comparing figure 3 
with the corresponding curve for two dimensions 
(Fig. 4) one sees both that the critical nucleus size falls 

1 T=0.8 8 8 
- 7 

0 20 40  60 80 100 n 
FIG. 4. -Equilibrium distributions of embryos for a two- 

dimensional Lennard-Jones system. 

more rapidly as a function of temperature and that the 
concentration of a given cluster size at a given tempera- 
ture is now much higher. In two dimensions there is 
a higher concentration of critical nuclei at a given 
temperature relative to the melting point. When this is 
added to the fact that fewer atoms are required in two 
dimensions to establish an embryo of a given diameter, 
it can be seen that nucleation is considerably easier in 
two dimensions. This is shown even more dramatically 
in comparing the plots of f(T). For three dimensions 
(Fig. 5) this curve peaks at around 0.5 TM while for two 
dimensions (Fig. 6 )  the peak is much closer to TM, and 
it is also much higher. The numerical values used in 
constructing these curves were obtained in the simula- 
tions of melting referred to earlier, and in the simula- 
tion of the two-dimensional case reported in the next 
section. The values are given in Appendix B. 

RG. 5. -Nucleation rate as a function of temperature for a 
three-dimensional Lennard-Jones system. The time unit t* is 
given through the potential parameters and the atomic mass 

FIG. 6. - Nucleation rate as a function of temperature for a two- 
dimensional Lennard-Jones system. 

5. Failure to bypass crystallization in two dimensions. 
Molecular dynamics simulation. - In the preceding 
section it was shown that crystallization is easier in two 
dimensions than in three. The existence in nature of 
numerous different types of glass attests to the fact that 
the crystallization process can be readily bypassed in 
three dimensions. It would be interesting to check 
whether or not one can produce a two-dimensional 
glass. This is possible by the type of molecular dyna- 
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mics simulation referred to earlier in this article, 
and the two-dimensionality would offer the advantage 
of visual monitoring of the results. From what has 
been discussed in the earlier sections, it will be clear 
that the obvious goal of such a simulation would be a 
check on the grain size of rapidly cooled liquids. If the 
grain size were so small that the implied dislocation 
density were at  the saturation level, one would conclude 
that a glass had been formed. A considerably larger 
grain size would indicate failure to bypass crystalli- 
zation. 

We report here the results of such a molecular 
dynamics simulation of the rapid cooling of a two- 
dimensional Lennard-Jones liquid containing 
918 atoms in the irreducible cell. We will not give the 
details of the actual method since this has been 
described elsewhere [7], [8], [9], [10], [Ill. The results 
are sliown in figures 7-10, and the various numerical 
values which are given in them are all in terms of the 
reduced units as dealt with in Appendix B. 

FIG. 7. - The caloric equation of state for the two-dimensional 
Lennard-Jones system calculated at a pressure of P=1.2 [elrf], 

FIG. 8. - The linear expansion of the model as a function of 
temperature for P = 1.2 [&l. 

Figures 7 and 8 show respectively the total energy 
and equivalent lattice parameter as a function of tem- 
perature. It is seen that the melting point is located at 
T = 0.528 f 0.012 and that the change in area on 
melting is 5.53 % f 0.13 %. By measuring the 
assembly-averaged mean square displacement, the 
diffusion coefficient was determined as a function .of 
temperature in the liquid state (see Fig. 9). This per- 

FIG. 9. - The self-diffusion coefficient of the liquid phase as a 
function of the inverse temperature (1 time step = 0.005 8 

[ J r G ] )  . The broken lines correspond to the estimated error 
on the activation energy. 

mitted one to find the diffusion activation energy and 
diffusion constant, and the result was AGD =2.76 L- 0.18 
and Do = 0.347 f 0.095. The liquid was then quench- 
ed at the fastest rate possible. The m'aximum rate at 
which an assembly of atoms can be cooled is deter- 
mined by the strength of their interactions with each 
other. Kinetic energy is removed by simply setting all 
the velocities to zero. After this has been done the 
kinetic energy again increases as the atomic rearrange- 
ments remove potential energy from the system. Every 
time the kinetic energy reached a maximum, the velo- 
cities were again set to zero, and the inter-quench 
time was about 50 computational cycles (i. e. ,about 
10- l 2  seconds of real time). 

The number of dislocations found in the quenched 
structures for dzfferent quenching temperatures from 
the liquid state. The dislocation numbers are estimated 
from the excess area excluding the contribution from 
vacancies. 

For a hexagonal lattice of dislocations with conti- 
guous cores of radius 1.5 [ro] the number of dislocations 
would be close to 100. 

Quench temperature No. of disfocations 
- - 

0.80 17.0 
0.73 28.2 
0.61 33.7 
0.57 23.2 
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Figures 10a and lob show a typical result of such a 
quench. The situation in the liquid immediately prior to 
the quench is shown in figure 10a, while lob shows the 
situation immediately after the quench (things do not 
change thereafter because the final temperature is zero). 
In the liquid it is possible,to get the impression of small 
(but not well defined) crystalline regions by looking at 
the figure at a low angle from various directions. In the 
quenched model it is quite clear that the grain dia- 
meter is now much larger, and the individual grains are 
quite weli defined. The mean grain diameter is between 

ten and fifteen nearest-neighbor distances, which is 
well above what would fit our criterion for the glassy 
state. The simulation has therefore produced a relati- 
vely coarse polycrystal rather than a glass. Table I 
shows how the quenched-in dislocation density varies 
as a function of the temperature from which the liquid 
is quenched. 

The production of a polycrystalline array rather 
than a glass, under the conditions of the simulation, 
should be considered in the light of the information 
contained in figure 4. The quenches start from various 
temperatures above the melting point. One notes that 
the higher the temperature the more rapidly does the 
distribution fall away for the larger cluster sizes. This 
difference in the initial cluster size distribution will 
affect the result of the quench experiments. This follows 
from eq. (25b) which, with the appropriate parameters 
inserted, results in relaxation times in two and three 
dimensions of the order of 10' to 106 timesteps, which 
should be compared to the quench time of roughly 103 
timesteps. The dependence of the dislocation density 
on the quench temperature, as reflected in table I, 
can thus be understood by assuming the growth of 
nuclei to proceed very rapidly. Since, at a given super- 
cooling, systems quenched from higher temperatures 
will contain fewer nuclei, the rapid growth of these 
nuclei will ultimately produce a solid configuration 
with larger grains and thus with a lower dislocation 
density. This argument can be valid only if the growth 
in two dimensions is of the same order of magnitude as 
that found for three dimensional systems [38], and this 

l indeed seems to be a reasonable assumption. 
When considering the results of a simulation of this 

FIG. Instantaneous configuration of the simulated two- type, it is to bear in mind the particular 
dimensional liquid at T = 0.61 [c/kB]. The periodic boundaries of conditions that arise from the Use of a system of limited 

the computational cell are shown. size. There is always a finite probability of the existence 
of an embryo of any given size as long as the specimen 

1 I is essentially infinite, but in a system with only 918 par- 
ticles, as used here, an embryo containing more than 
918 particles is of course excluded. Indeed, if the 
equilibrium distribution prevails, the maximum embryo 
size is even much lower than this since the sum of this 
distribution cannot exceed 918. Furthermore, the 
periodicity of the model precludes concentrations of 
embryos below = 10-3. Another way of considering 
these aspects of the problem is to note that the limita- 
tion on the size of the model restricts one to the upper 
left region of figure 4, and this tends to lower the varia- 
tion in dislocation density that can be observed in the 
simulation. 

Finally it might be noted that all the qualitative 
arguments against the formation of a two-dimensional 
Lennard-Jones glass are less severe when applied to a 
three-dimensional system. 

6 .  Discussion. - The key concept in the model 
I 1 presented in this paper is the pseudodislocation. Its 

FIG. 106. - The configuration obtained by quenching the liquid existence in the liquid and glassy states provides a 
structure of figure 10a. way of understanding the physical processes that deter- 



A UNJFIED THEORY OF MELTING, CRYSTALLIZATION AND GLASS FORMATION C2-45 

mine the viscous behavior of those states. It must be 
stressed that the pseudodisIocation is different from the 
crystal dislocation in several important respects. Since 
there is no good crystal left in either a liquid or a glass 
(i. e. no region of crystal in which the stress is not near 
or above the elastic limit) the pseudodislocation cannot 
have a long-range stress field. It also has no strictly 
defined slip plane only a local direction in which motion 
is easiest. The concepts of glide, climb and pipe diffu- 
sion are distinct and different in a crystal dislocation, 
whereas they converge towards becoming one and the 
same thing in liquids and glasses. 

One might then wonder what characteristic is left for 
a pseudodislocation to enable one to define it. How is it 
to be identified as existing above the general level of 
randomness that otherwise prevails in these states ? 
It is important to bear in mind that a liquid is not truly 
random as is a perfect gas. The pair distribution func- 
tion (which describes the probability of atom-atom 
separations) has a structure which departs from the 
random situation. One reason for this is the impossi- 
bility of separations less than about an atomic dia- 
meter. The shortcoming of this distribution function is 
that it is non-directional, and that it is space averaged. 
(When obtained from experiment, it is also time 
averaged.) The question then arises : if a close-packed 
assembly of atoms is not truly random, what identi- 
fiable departures from randomness will it display ? In 
particular, what will be the spatial form of the non- 
random features ? The two obvious possibilities are a 
network of lines along which the assembly is more open 
than elsewhere or a random array of what might be 
called pseudovacancies and pseudointerstitials. In the 
model favored here one has a constantly changing 
network of curved lines, the pseudodislocations, the 
individual segments being only a few nearest-neighbor 
distances in length. Atomic motion is envisaged as 
taking place by a type of pipe diffusion, which not only 
moves the position of the diffusing atom but also the 
local position of the pseudodislocation itself. 

The unified theory described in this paper is not so 
much an original suggestion as a development and 
more precise statement of what has been discussed by 
previous authors. Twenty years ago, for instance, 
Shockley suggested that a liquid could be regarded as 
a solid densely packed with dislocations [31]. Another 
pioneering paper, by Mott and Gurney [l], was cited 
in the introdcction as were several pertinent papers that 
have appeared in the last two decades. One can also 
find an implicit reference to the possible connection 
between dislocations and the liquid state in Bragg's 
estimate of the core energy of a dislocation [32]. Experi- 
mental support for the views expressed here has 
appeared in the literature during the last decade. 
Fessler, Kaplow and Averbach [33] have for instance 
found that their X-ray diffraction data on liquid and 
solid aluminum is best explained in terms of a quasi- 
crystalline model for the liquid state. There is also the 
recent electron microscopy data on the amorphous 

state of germanium collected by Rudee and Howie [34, 
351. They find that their specimens were best described 
as polycrystalline arrays with a grain diameter of 
about 14 A. This is about the same grain diameter as 
would be required in the model described in this paper. 
A particularly interesting feature of the Rudee-Howie 
observations is that the small crystallites had a wurtzite 
structure rather than a diamond structure. Howie 
[private communication] has observed that disloca- 
tions in crystalline germanium dissociate into partials 
with a separation of 70 A and that the resultant stacking 
fault causes the local structure to transform to the 
wurtzite structure. The 70 A separation has no signifi- 
cance in the present context, but the result shows that 
the energetically favorable partial dislocation in ger- 
manium is connected with the wurtzite structure. 
The implication is that the amorphous form is essen- 
tially the crystalline form saturated with the most 
favorable partial dislocations. This corresponds to what 
has been observed in the computer simulations of the 
melting of FCC crystals [8, 1 l], namely the generation 
and rapid proliferation of the most favorable partial 
dislocation in that structure : the Shockley partial. 

It is worth reiterating the fact of the valuable role 
played by computer simulation in that it enables one to 
check at a microscopic level the ideas put forward here. 
The insertion of dislocations until saturation is reached 
has already been shown to produce a liquid-like pair 
distribution function [6, 91 in three dimensions and 
dislocations have also been linked to two-dimensional 
melting [7]. Finally, the two-dimensional quenching 
described in the foregoing section is instructive because 
it explores the borderline region in which the glassy 
phase is apparently not quite reached. 

7. Conclusion. - A model has been proposed which 
provides a unified view of the melting, crystallization, 
and glass formation processes, and of the nature of the 
liquid and glassy states. The unifying concept is the 
dislocation, which is already well known in the crystal- 
line phase. It is proposed that this concept can be 
retained in a more generalized form, the pseudo- 
dislocation, in the liquid and glassy states. These states 
are to be regarded as polycrystalline arrays in which the 
grain diameter is about twice the dislocation core 
radius. The difference in the viscosities of the'liquid and 
glassy states is attributed to the difference in the mobi- 
lity of the pseudodislocations. The sudden decrease in 
the mobility of the pseudodislocations at the glass tran- 
sition temperature is presumably due to the cessation 
of the formation ofpoint dislocations by thermal activa- 
tion. This, taken together with the tendency of disloca- 
tions to arrange themselves in low-energy grain boun- 
dary structures, will effectively increase the grain size. 
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APPENDIX A 

On the applicability of nucleation theory to the pro- 
blem of grain growth. - If there is a difference in the 
dislocation densities on the two sides of a grain boun- 
dary, there will be a driving force which will tend to 
make the boundary bulge out in the direction of the 
higher dislocation density. This situation was first 
considered by Bailey [23]. In what follows we call the 
low density side A and the high density side B. 

We will follow the general approach of Burke and 
Turnbull [36]. Let AF be the difference in free energy 
per atom between the regions close to the boundary 
and on either side of it, and let AFA be the activation 
free energy for atomic movement. The frequency a t  
which atoms jump from B to A is 

while from A to B it is 

fAB = v exp(- (AFA + AF)/~T) (A. 2) 

where v is the atomic vibration frequency. The net 
frequency for movements B to A is 

f = ~ B A  - ~ A B  = 
= v exp(- AFA/kT) (1 - exp(- AFlkT)) . (A. 3) 

Using the approximation that exp(- X) = 1 - x for 
small X, this reduces to 

Following Cahn [24] and Christian [25] we also write 

where 

AFs = F,B - F: (A. 6) 

and where F: and F: are the free energies per atom in 
grains A and B respectively. y is the grain boundary 
energy and b3 is the atomic volume. b3(dA/dV) 
expresses the growth of grain boundary area where one 
atom moves from grain B to grain A, dA being the 
increase in area and dV the increase in volume. 
Eq. (A.4) can now be written 

The number of atoms in the bulged-out boundary 
(see Fig. A. 1) that have a chance to migrate from B to 
A is Ab/b3 = A/b2 where A is the area of the bulge. 

FIG. Al.  - Definition of the quantities appearing in the mathe- 
matical description of grain growth. 

Hence the net rate of volume change per unit time is 
given by multiplying fA/b2 by the atomic volume b3. 
Thus 

X exp(- AFA/kT) . (A. 8) 

This expression agrees with corresponding expressions 
given by Cahn and Christian. We will clearly require 
the quantities daldt and dA/dV. These are given 

da da dV - =-.- 
dt dV dt (A. 9) 

(A. 10) 

The geometry of the bulge is such that (see Fig. A. 1) 

A = 2nRh (A.l l)  

V = nh2(R - h/3) (A. 12) 

L = R sin a (A. 13) 

h = R(l - cos a) (A. 14) 

which leads to 

- - dA - 2 ~ ; R Z  sin a 
da 

(A. 15) 

(A. 16) 

(A. 17) 

Thus we have finally 

2 
~ - ~ ( A F s - y b 3 T ) x  
dt kTR R sin a 

X exp( -, AFA/ KT) 
1 

sin a(1 + c 0 3  
(A. 18) 

which is to be compared with Cahn's expression [24] 

da 1 + cos a - = ?? (AF, - yb3 
dt k2-R R sin a 

(A. 19) 

and the expression given by Christian [25] 

2 sin a = ?? (AF, - yb3 -) 
dt kTR R 

l + cos a 
X exp(- AF,/kT) 

sin a 
. (A.20) 

Growth will proceed if daldt is greater than zero, and 
the three different expressions given above lead to the 
following conditions for growth 

sin2 a > -?I!?- ((Present analysis) 
R AFs 

(A. 21) 



A UNIFIED THEORY OF MELTING, CRYSTALLIZATION AND GLASS FORMATION C2-47 

l > -  ((Cahn's analysis) 
R AFs 

(A. 22) 

1 2 ~ b 3  ->- (Christian's analysis) . (A. 23) 
sin a R AFs 

These three conditions are of course all equivalent for 
the special case of a = 42 ,  and they all then give 
R > 2 yb3/AI.',, for growth. 

In their general forms, however only (A. 21) leads to 
the necessary condition that the bulge must be larger 
than a certain size in order that growth will continue 
spontaneously. Thus only (A. 21) is consistent with the 
normal conditions of nucleation. 

Let us now adopt an alternative course and assume 
at  the outset that nucleation theory does hold. Then in 
the usual way A F  will have a surface component and a 
volume component that will oppose one another. We 
have for the free energy difference for the entire system 
with and without the bulge 

v 
AF = Ay - - AF, . (A.  24) 

b 

Regarding A F  as a function of a, for constant R, the 
condition d AF/da = 0 will give the critical value of a 
and hence the critical nucleus size. Using (A. 11)- 
(A. 14) we have 

T G R ~  AF = 2 nR2(1 - cos a) y - - X 
3 b3 

X (1 - cos a)' (2 + cos a) AFs (A. 25) 

and 

-nR3 
d ~ F l d a  = 2 nR2 sin a - - sin3 a AF,. (A.26) 

b 

From which the condition for spontanous growth 
becomes 

. 2 b 3 y  sin a = - 
R AF, ' 

The conditions (A. 27) and (A. 21) are of corse equiva- 
lent. Thus we have found that the growth of a grain by 
the bulging out of a grain boundary is governed by the 
normal principles of nucleation. 

APPENDIX B 

Values of the constants used in section 4. - The 
various constants used in the calculations of embryo 
size distribution and nucleation rate were obtained 
from molecular dynamics simulations of both two- 
and three-dimensional systems, using a Lennard- 
Jones 6-12 interaction. The only difficulty in obtaining 
appropriate numerical values occurs in the case of the 
two-dimensional liquid-crystal interfacial energy y,,. In 
three dimensions the experimental surface energy for 

krypton, y,, (for solid-gas), is 54.5 ergs cm-', which 
is 3.72 in the reduced units employed here [26]. This is 
in agreement with recent calculations on micro- 
crystals [27]. Using the well-established rule that 
ySL W ySG/10 [28], this gives y,, = 0.372 for the three- 
dimensional case. This is also consistent with the 
empirical result of Kotze and Kuhlmann-Wilsdorf [29] 
that y,, y,,/2, where y,, is the average grain 
boundary energy, and the fact that for a number of 
metals y,, E ys,/5 [30]. In two dimensions the situa- 
tion is more complicated. It has been found by com- 
puter simulation that y,, - y,, - 1.2 for such a 
system. It seems therefore that the rule y,, - yGB/2 
does not apply in two dimensions, but the relationship 
ySL N ySG/10 has been assurmed to hold nevertheless 
because this gives a value of r,,,,,, which is similar to 
that obtained for three dimensions. Use of the rule 
ys, -- yG,/2 in two dimensions would have produced a 
much larger value of r,,,,,, which seems physically 
unreasonable. Hence we have, for two dimensions, 
ys, = 0.12. 

The results of both simulations will be given in the 
following reduced units 

where k is Boltzmann's constant, m is the atomic mass, 
and where E and r, are the constants of the Lennard- 
Jones potential 

V(r) = s((r0/r)" - 2(ro/r)6). (B. 2) 

The results were as follows. 
Two dimensions 

The value of L, must be multiplied by 2 /43  if it is 
required in terms of unit area. 

Three dimensions 

The value of L, must be multiplied by J2 if it is 
required in terms of unit volume. 
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