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COMPUTER SIMULATION OF DISLOCATIONS 

R. C. PERRIN 

Theoretical Physics Division, A. E. R. E. Harwell, Didcot, Oxfordshire, England 

RBsumB. - L'auteur donne un aperGu des progrks recents obtenus dans la simulation sur ordi- 
nateur des dislocations dans un reseau cristallin. En particulier, deux nouvelles mkthodes commodes 
pour trouver la configuration d'equilibre des atomes sont decrites en detail. Le simple champ 
des deplacements de l'klasticitt lineaire anisotrope utilisk habituellement pour connaitre les posi- 
tions atomiques sur l'interface de separation de la region atomique ne peut tenir compte d'aucun 
des effets non lintaires se produisant au cceur de la dislocation. Les traitements plus sophistiquks, 
necessaires pour dkcrire l'effet B longue portee des non-linkarites de cceur, sont discutks dans cette 
region d'interface Blastique, y compris la dilatation qui accompagne la dislocation. On prksente 
quelques resultats relatifs a la dissociation et de dislocations rectilignes, et de boucles, dans le 
cuivre. 

Abstract. - A review of recent advances in the techniques of computer simulation of dislocations 
in crystal lattices is given. Two efficient new methods of finding the equilibrium atomic configura- 
tion are described in detail. The simple linear anisotropic elastic displacement field which is nor- 
mally used to determine atomic positions in the boundary surrounding the atomic region does 
not allow for any non-linear effects in the dislocation core. More sophisticated treatments of this 
elastic boundary region which can describe the long range effects of core non-linearities, including 
the dilatation associated with a dislocation, are discussed. Some results on the dissociation of 
both straight dislocations and loops in copper are presented. 

1. Introduction. - The detailed atomic configu- 
rations of dislocation cores are important in determin- 
ing many material properties. For example, the nature 
and degree of dissociation of the screw dislocation 
appears to be responsible for the asymmetry of slip in 
body centred cubic metals [l, 21 and the interaction 
between dislocations and point defects is critical in 
determining material behaviour in an irradiation 
environment. For instance, the considerable volume 
swelling of reactor materials irradiated at temperatures 
between one third and one half of their melting tem- 
peratures is attributed to the fact that dislocations have 
a stronger attraction for interstitial atoms than for 
vacancies [3]. 

The atomic configuration of crystal defects can best 
be obtained by direct computer simulation calculations 
in which the co-ordinates of a relatively small number 
of point atoms are stored in the computer. These 
atoms, which are arranged initially in some approxima- 
tion to the defect to be investigated, are assumed to 
interact via some prescribed law (usually an axially- 
symmetric two-body interaction) and the equilibrium 
configuration of the defect is obtained by finding the 
minimum energy configuration of this atomic assembly. 
The most important feature of such a calculation is 
obviously the choice of a realistic interaction between 
i l  c htcms but since that subject has been considered 
( 2  rt I si\ ely elsewhere 14-61 this paper will be devoted to 

two other important aspects of simulation calculations. 
In the following section efficient procedures for finding 
the equilibrium configuration are discussed and two 
new methods which are currently being used at 
Harwell with encouraging results are described. 

In order to maintain stability of the atomic assembly 
it is necessary to surround it with a boundary region in 
which the atoms are held fixed during relaxation. 
Because of their long range strain fields the treatment 
of this boundary region is particularly important in the 
simulation of dislocations and recent developments in 
this area are described in the third section. In the final 
section some recent results on the dissociation of both 
straight dislocations and loops are presented. 

2. Energy minimisation methods. - A considerable 
number of methods have been used by various 
authors to obtain the energy minimum and equilibrium 
configuration of the atomic assembly, the methods 
being based usually on computational simplicity rather 
than mathematical sophistication. Probably the most 
widely used method has been the so-called quenched 
dynamical method [7-91. In this method, atoms which 
are not in equilibrium are allowed to accelerate under 
the influence of the net force upon them and their 
classical equations of motion are integrated by a simple 
finite difference scheme. A suitable choice of time step 
ensures that the kinetic energy of the assembly passes 

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1974710

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphyscol:1974710


C7-104 R. C.  PERRIN 

through a maximum after a few time steps and, since 
this corresponds to a local minimum of potential 
energy, the velocities of all the atoms are put to zero 
and the relaxation process is repeated. The method is 
simple to implement, has relatively modest storage 
requirements and seems better at avoiding unwanted 
metastable configurations than other methods. 

An alternative approach has been to move each 
atom in turn to the position where the net force on it is 
zero and to cycle through each atom in the assembly 
many times until the equilibrium configuration is 
reached [lo]. 

Two methods have been suggested by Sinclair and 
Pollard [I l l  which greatly reduce the number of eva- 
luations of the interatomic interaction which are 
required but at the expense of inverting or diagonalising 
the matrix of second derivatives of the energy. As both 
inversion and diagonalisation of matrices are lengthy 
numerical procedures the value of these methods is 
restricted to those cases where repeated relaxations 
from similar starting configurations are required. 

In discussing minimisation procedures it is useful to 
classify methods according to whether only the func- 
tion to be minimised is evaluated or whether first and 
possibly second derivatives are also known. Methods 
which require the evaluation of derivatives will, in 
general, converge in many fewer steps and if the compu- 
tational effort of calculating the derivatives is not 
excessive they are to be preferred. Because, near the 
minimum of the function, the second order terms in the 
Taylor series expansion dominate, minimisation 
methods have usually been constructed to have qua- 
dratic termination - that is, the exact minimum (to 
machine round-off error) of a quadratic function will 
be found in a finite number of steps. Specifically, the 
minimum of a quadratic function of N variables will be 
found in at most N2 steps if only the function is eva- 
luated, in N steps if first derivatives are known and if 
oRe step if the matrix of second derivatives is also 
known. Applied to more general functions the methods 
are iterative and convergence is not guaranteed in a 
finite number of steps but the quadratic termination 
feature should ensure rapid convergence as the mini- 
mum is approached. A minimisation method which 
makes use of second derivatives of the function is thus 
very efficient in terms of the number of function evalua- 
tions required which makes it particularly suitable for 
calculations where the evaluation of the interatomic 
interaction is lengthy, such as in ionic solids. However, 
the extensive storage requirements for the second 
derivative matrix make such a method unsuitable for a 
problem where the number of variables is large and the 
evaluation of the interatomic interaction is simple, 
which is usually the aase for metals. Therefore, two 
methods are described below which have recently been 
implemented at Harwell. One is a second derivative 
method which is very efficient in terms of function 
evaluations while the other is a fast first derivative 
method with modest storage requirements. 

2.1 VARIABLE METRIC METHODS. - In the method 
proposed by Sinclair and Pollard, based on inverting 
the matrix of second derivatives of the energy (the 
Hessian), they use the value of the inverse, calculated at 
the initial configuration, to speed the convergence of 
the method. This inverse will not be appropriate a t  the 
minimum, which will slow the rate of convergence. 
However, a class of methods, the so-called variable 
metric methods, do exist for updating an approxima- 
tion to the inverse H of the Hessian matrix G in such a 
way that as the minimum is approached the approxi- 
mation H tends to the true inverse GI1. The original 
variable metric method was due to Davidon [12] but the 
algorithm was simplified by Fletcher and Powell [13]. 
In the description of this method given below the 
following notation will be used : 

E : the crystal energy, is the function to be mini- 
mised. 

X (x,, x,, ..., x,) is the vector of co-ordinates of 
the atoms. 

g : is the vector of derivatives of E with elements 
gi = 8E/dxi. 

G : is the matrix of second derivatives of the energy - 
(the Hessian) with elements Gij  = a2E/axi ax,. 

H : is an approximation to G-'. 

If Ho is an approximation to Gil at the configura- 
tion denoted by Xo then, provided Ho is positive 
definite, in analogy to the Newton-Raphson method a 
step in the direction S = - go go will reduce the 
energy and give an improved approximation X, to the 
equilibrium configuration. 

If 6 = X, - X, is the change in the configuration 
and y = g, - go is the change in the vector of gra- 
dients, then an improved estimate of H can be obtained 
from 

where the superscript T denotes transposition. 
The alternative formula 

which may deal better with difficult situations which 
might arise has been proposed by Broyden [14] and 
Fletcher [15]. In the original Fletcher Powell method 
the function E was minimised in the direction S before 
H was updated and searching in a new direction was 
commenced. This linear minimisation allows a proof of 
quadratic convergence but requires several function 
evaluations. Fletcher [15] has proposed abandoning 
the linear search and taking just one step in the direc- 
tion S. He showed that provided the eigenvalues of H 
tend monotonically to those of G-l ,  which is thecase 
for both the above updating formulae (1) and (2), and a 
check was included to ensure the reduction of E at each 
step, then ultimate convergence for quadratic functions 
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was assured. Extensive testing [15] showed thatthis 
strategy was superior, in terms of function evaluations, 
to the Fletcher-Powell algorithm. This minimisation 
method has been incorporated by Norgett [16] in a 
Harwell program package HADES (Harwell Auto- 
matic Defect Evaluation System) for investigating the 
configurations of point defects in ionic solids. Results 
which have been obtained with this program indicate 
that the method is very efficient [17]. 

2.2 THE CONJUGATE GRADIENTS METHOD. - The 
need to store the inverse of the second derivative 
matrix makes the variable metric method, described 
above, impractical for use where large numbers of 
atoms must, of necessity, be included, such as in the 
determination of ,the dissociation of dislocations in 
materials of low stacking fault energy. A suitable 
method for such large calculations is the conjugate 
gradients method of Fletcher and Reeves [18], since it 
requires only the evaluation and storage of the first 
derivatives of the energy. 

In this method, if Xi is an approximation to the 
equilibrium configuration, then an improved approxi- 
mation Xi+, is generated by finding the minimum of 
the energy along a search direction Si. If the search 
directions are chosen to be mutually conjugate with 
respect to the matrix of second derivatives G,  that is if 

ST g S j  = 0 for i # j , (3) 

then, for quadratic functions, once the gradient has 
been set to zero in a particular search direction it is not 
disturbed by minimising the gradient in another search 
direction. This ensures that the method is quadratically 
convergent. This conjugacy condition may be imposed 
without explicit evaluation of G by choosing the search 
direction Si to be a linear combination of the gradient 
vector gi and the previous search directions S .  ( ' - 0 

J J :  
to i - l), which satisfy the condition (3). If the initial 

If the chosen step length a is such that the condition (5) 
is satisfied then a new search direction is chosen in 
accordance with (4) and the iteration is continued. If 
the choice of a fails to satisfy (5) then one of the 
following actions is taken. If a was too small 

(gT(xi + asi) S i  < 0) 

an additional step is taken with the step length cal- 
culated on the assumption that gT Si varies linearly 
with a. If a was too large (gT(~i-+ asi) Si > 0) it & 
revised using a cubic interpolation formula [18] and the 
step is repeated. The initial guess at a is based on the 
assumption that the reduction in E on the current 
iteration will be equal to that on the previous iteration. 
Then if E is assumed to be a quadratic function of a an 
excellent estimate is given by 

With this choice of a, the condition (5), with p set 
at 0.1, was usually satisfied with one interpolation or 
extrapolation. 

This procedure has been incorporated in a Harwell 
program DEVIL (Defect Evaluation In Lattices) for 
simulating defects in systems with relatively short 
ranged potentials, such as are typically used for metals. 
It has been used by Norgett, Perrin and Savino [20] 
and Perrin and Savino [21] to determine the dissocia- 
tion of the edge and screw dislocations in copper and 
by Savino and Perrin [22] to describe the morphology 
of vacancy loops in copper. In the latter calculation 
over 5 000 atoms (15 000 variables) were included and 
the equilibrium configuration was obtained with about 
150 evaluations of the interatomic interaction. This 
suggests an approximate rule that one function evalua- 
tion is required for every hundred variables, which is 
considerably better than is obtained with the quenched 
dynamical method. 

search direction So is taken as the direction of steepest 
descent, then Fletcher and Reeves give 3. Continuum boundaries around the atomic region. - 

Since the region of crystal which may be simulated 
s o  = - go atomistically is very small (a few thousand atoms at 

most) the boundary conditions which are imposed 

Si = - g i +  gT gi 
Si- I (4) upon this region are obviously important, especially 

gi-1 gi- 1 for the simulation of dislocations because of their 

as a simple formula for choosing search directions 
which satisfy the conjugacy condition. Alternative 
formulae for choosing Si  have been discussed by 
Fletcher [19]. 

The search direction having been chosen, the second 
part of the problem is to find the step length a which 
minimises the energy in that direction. For general 
functions it is not possible to solve this linear search 
problem exactly in a finite number of steps and an 
approximate solution must be accepted. A suitable 
criterion is that the gradient in the search direction is 
reduced by a prescribed amount, i. e. 

extremely long range strain field. To confirm with a 
notation in common use, the region of crystal in which 
the atoms are treated as freely interacting particles 
will be referred to as region I. In the region surrounding 
this, termed region 11, the atomic co-ordinates, which 
are required for the evaluation of the forces on atoms 
in region I, are derived from elasticity theory. 

In early calculations of dislocation configura- 
tions [23, 241 the displacement fields from isotropic 
elasticity theory were used in region 11. The potentials 
in current use have generally been fitted to, or repro- 
duce satisfactorily, the observed elastic constants and 
so the simulation of the atomic region will reproduce 

I gT(Xi + asi) Si/gT(Xi) Si I < p < 1 . ( 5 )  the full anisotropy of the crystal. The use of boundary 
8 
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displacements derived from isotropic theory is, there- 
fore, no longer justified in accurate calculations, espe- 
cially as the anisotropic elastic displacements around a 
dislocation are readily available from the work of 
Eshelby, Read and Schockley [25]. Although the 
method of Eshelby et al. is well known the principal 
formulae are set out below to facilitate a later discus- 
sion of recent developments. 

If we consider an infinite straight dislocation line 
lying along the X,  axis, then the translational symme- 
try along the dislocation line means that the displace- 
ments, stresses, etc. can only be functions of the 
co-ordinates XI and X,. Eshelby et al. show that the 
displacements can be written as 

where fa is an arbitrary function of 

and the complex coefficients pa and A4 are obtained by 
substituting the form (7) in the equilibrium equations. 
The fact that the stress associated with the dislocation 
must remain analytic means that dfa/dza is analytic 
and hence can be expanded in a Laurent series. This 
leads to f, taking the form 

The logarithmic term provides the required closure 
failure round a Burgers circuit and so the coefficients 
Da are determined by the dislocations Burgers vector 
and the fact that it is subject to no net body force. The 
other terms allow arbitrary boundary conditions to be 
satisfied on any given boundary. 

A slightly simplified form of the Eshelby et al. 
theory has been given by Stroh [26] but a particularly 
useful formulation has been given by Willis [27]. In the 
Eshelby et al. and Stroh formulations it is necessary to 
solve a set of linear equations for the coefficients A:. 
When the XI-X ,  plane is a plane of symmetry these 
equations uncouple, which simplifies the analytical 
treatment of the particular case, but makes the general 
case more difficult to program. The Willis approach is 
particularly suitable in this respect as it gives an explicit 
expression for the displacements. 

In applications of the above theory to provide the 
displacements for boundary atoms in simulation 
calculations [28, 91 it has generally been assumed that 
it is sufficient to use the logarithmic term, which pro- 
vides the long range field of the dislocation, and that, 
if the atomic region is large enough, the higher terms 
have decayed sufficiently to be neglected. This may 
require the use of a very large atomic region to avoid 
a mismatch of displacements at the boundary. This is 
particularly relevant to the simulation of dislocation 
dissociation where the atomic region required may be 
very large. In their simulation of the < 110 > edge 

dislocation in copper, Norgett, Perrin and Savino [20] 
found that it was necessary to have 1 120 atoms in the 
atomic region to avoid spurious-boundary effects. 

Sinclair 1291 has shown how the higher terms in the 
expansion (9) may be included in determining the 
elastic displacements of the boundary and that inclu- 
sion of these terms allows the size of the atomistic 
region to be reduced considerably without loss of 
accuracy. He considered the particular case of the 
< 100 > edge dislocation in a cubic crystal for which 
an analytical solution for the logarithmic term was 
available from the work of Eshelby et al. [25]. Since it 
is more convenient to compute with real quantities 
Sinclair re-wrote the expression for the displacements 
as 

m 4 

where u, includes the usual logarithmic terms and the 
real coefficients S(n, j )  are related to the complex 
coefficients C," of (9) by 

The index a takes only the values 1 and 2 as u3 = 0. 
The higher order terms U(n, j )  are simple linear 
combinations of zin.  For instance 

where A is a constant [29]. 
This re-arrangement makes some terms odd func- 

tions of XI (those with n and j either both even or both 
odd) so that their coefficients must be zero if the 
X2-X3 plane has mirror symmetry, which is the case 
for the cube edge dislocation. 

The coefficients S(n,j) were determined as follows. 
The atoms in region I and the surrounding continuum 
region I1 were positioned according to the long range 
field uo and then the atoms in region I were allowed to 
relax to their equilibrium configuration. If the potential 
describing the interaction between atoms in region I 
was used to examine the forces on those atoms in 
region I1 which were close enough to interact with 
region I, then these forces were in general significant, 
indicating that the continuum displacements were 
incorrect. The forces on these boundary atoms were 
reduced to zero by treating the coefficients S(n, j )  as 
generalised co-ordinates of the system and determining 
their conjugate forces F, 

Here f, is the net force on atom k, and k is summed 
over those atoms in region I1 which can interact with 
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region I atoms through the interatomic potential. The 
field coefficients S(n, j) and the co-ordinates of the 
atoms in region I were then adjusted until the gene- 
ralised forces F,, as well as the forces on region I 
atoms, were zero. 

In his calculation, Sinclair included these terms for n 
up to 4 (8 non-zero field coefficients) and varied the 
size of region I from 100 to 276 atoms. He found that 
the variation of atomic bond lengths in the dislocation 
core with the size of region I was much less when these 
extra terms were included in the elastic solution. With 
the simple boundary due only to the long-range field, 
the maximum variation in bond length when the num- 
ber of atoms in region I was increased from 100 to 276 
was I % and this was reduced to 0.04 % by the inclu- 
sion of the higher terms. 

An alternative approach to improving the simple 
linear elastic boundary solution and reducing the 
mismatch between region I and region I1 has been 
adopted by Gehlen, Hirth, Hoagland and Kanni- 
nen [30] who also considered the < 100 > edge 
dislocation in b. c. c. iron. Their method is as follows. 
Atoms in both the atomic and boundary regions are 
given the linear isotropic elastic displacements appro- 
priate to the cube edge dislocation and then the atoms 
in region I are allowed to move towards their equili- 
brium positions using the quenched dynamical relaxa- 
tion method. After a number of iterations of the relaxa- 
tion procedure it is terminated, a cylindrical surface T ,  
centred on the dislocation, line is drawn in the atomic 
region and the tractions on this surface are calculated. 
The force exterted on an atom on the outside of r by 
an atom in the interior is assumed to act on the sur- 
face I' at the point where the line of action of the force 
intersects r. (It is necessary to subtract from this the 
force which would exist between the same atoms in the 
perfect lattice, otherwise this prescription would give 
non-zero tractions in the perfect lattice.) The surface r 
is divided into a number of equal segments and the 
resultant force per unit area is resolved into normal 
and tangential components. The distribution of these 
tractions around r is conveniently expressed by fitting 
to a Fourier series. Knowledge of these tractions on T ,  
together with the assumption of zero applied stress on 
the external surface, allows the displacements in the 
continuum region to be recalculated. Relaxation of 
region I is continued, with the above adjustments 

being made to region 11, until the tractions on r are 
consistent with the displacements in both regions. 

By matching the additional elastic fields introduced 
by this procedure to the fields produced by a pair of 
double forces, Gehlen et al. concluded that the extra 
fields could be well described by an elliptical dilatation 
source, the centre of which was displaced from the 
centre of the dislocation towards the region of tension 
by a distance of 5.2 A. 

In agreement with the conclusions of Sinclair [29] 
they found that the more sophisticated treatment of the 
displacements in region 11 allowed the number ofatoms 
in region I to be reduced by a factor of 2 or 3 without 
loss of accuracy. The detailed configuration of the 
dislocation core was very similar to that obtained by 
Sinclair in spite of the use of isotropic elasticity in the 
boundary. This is illustrated in table I where a compa- 
rison of a typical interatomic bond length in the dis- 
location core is displayed for a number of models 
considered by both authors. 

The small variation of bond length with model size 
when the improved boundaries are used in striking, as 
is the agreement on its magnitude. These results also 
suggest that, even with 780 atoms in region I, the 
simple fixed boundary is having an influence on the 
core configuration. A more detailed comparison of 
results is given in reference [30]. 

These extra terms in the elastic boundary have their 
origin in the non-linear response of the interatomic 
potential used in region 1 and are therefore capable of 
describing the volume change associated with the 
creation of a dislocation. This volume change was not 
evaluated by Sinclair but Gehlen et al. quote a value 
of 0.25 b2 per unit length of dislocation, although this 
value is not very well converged, being rather sensitive 
to the model size. 

Sinclair and Bullough [31] have investigated the 
effect of including in region I1 the non-linear elastic 
displacement field derived by a second order pertur- 
bation method due to Willis [32]. In general, theimpro- 
vement in the displacement field produced by this 
second order solution was not sufficient to justify the 
added complexity of the calculation. An exception, 
however, was the < 100 > screw dislocation in the 
body centred cubic lattice (not a dislocation of practi- 
cal interest) where a worthwhile improvement over the 
linear solution was found. The reason for this is that, 

Sinclair 
Atoms in Bond 
Region I Boundary Length A 
- - - 
100 Improved 4.391 8 
276 Improved 4.390 0 
100 Simple 4.318 1 
276 Simple 4.359 9 

Gehlen et al. 
Atoms in Bond 
Region I Boundary Length A 
- - - 

100 Improved 4.396 4 
340 Improved 4.392 5 
340 (*) 4.391 5 
780 Simple 4.383 9 

(*) With approximate correction for anisotropy. 
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for a screw dislocation perpendicular to a plane of 
elastic symmetry, the second order perturbation solu- 
tion is fortuitously accurate to third order. Even in this 
case they found that the higher ordel terms in the linear 
solution were more important than the inclusion of 
non-linear effects. They concluded that a better solu- 
tion of the non-linear equations than the second order 
perturbation treatment of Willis 1321 was required. 

In an atomic simulation of edge dislocations in ionic 
crystals, Granzer, Belzner, Biicher, Petrasch and 
Teodosiu ' [33] have used a non-linear displacement 
field which is the exact third order elastic solution, but 
no details of the method were given. 

4. Dissociation of dislocations in the face-centred 
1 

cubic lattice. - 4.1 STRAIGHT < 110 > DISLOCA- 
2 

TION. - In the face-centred cubic lattice, a dislocation 
1 

with a - < 110 > Burgers vector can lower its energy 
2 

by dissociating on a (1 11) plane into a pair of Shockley 
partial dislocations separated by a region of intrinsic 
stacking fault. 

For example 

In a recent computer simulation of the edge and screw 
dislocations in copper, Norgett, Perrin and Savino 1201 
found that this dissociation did occur. In these calcula- 
tions the cubic spline potential constructed by Englert, 
Tompa and Bullough [34] was used to simulate the 
interaction between the atoms. This empirical potential 
was fitted to the experimental elastic constants and in 
the repulsive core region it was matched to a Born- 
Mayer potential which reproduced the experimental 
displacement energies. It was scaled to give a vacancy 
formation energy of 1.1 eV and a stacking fault energy 
of 70 ergs cm-'. That this potential predicts a reaso- 
nable fault energy for copper is particularly important 
as this, together with the mutual repulsion of the 
partials, determines the extent of the dissociation. 

The equilibrium separation of the partials was 
determined by first giving the atoms in both the inner 
and boundary regions the anisotropic elastic displace- 
ments corresponding to two partial dislocations with 
an arbitrary separation on the slip plane. Then, with 
the boundary region held fixed, the inner region was 
allowed to relax to its equilibrium configuration using 
the conjugate gradients method described above. When 
equilibrium was attained the displacements, fromper- 
fect lattice positions, of the (1 11) planes on either side 
of the slip plane were computed. The centres of the 
partials were taken to be the points where the relative 
displacements of these planes in the [I101 direction 

1 3  
were equal to and of the total Burgers vector. The 

elastic displacements appropriate to this separation of 
the partials were then reimposed on the assembly and 

the inner region was allowed to relax as before. This 
procedure was continued iteratively and the final 
equilibrium configuration was achieved when the elastic 
displacements on the boundary atoms were those 
appropriate to the separation of the partials in the 
relaxed inner region. The elastic displacements imposed 
on the boundary atoms were the long range anisotropic 
elastic displacements derived from the logarithmic 
terms in (9). With 1 120 atoms included in the inner 
region it was found that the displacements in the atomic 
region matched smoothly on to the elastic displace- 
ments in the boundary. 

The equilibrium atomic configurations of the edge 
and screw dislocations, which are shown in figures 1 
and 2 as projections on the { 11 1 ) slip plane, proved to 

FIG. 1. - A { 111 } projection of the atomic configuration, 
across the slip plane, of the edge dislocation in copper. The 

position of the partials is indicated. 

FIG. 2. - A { 111 ) projection of the atomic configuration, 
across the slip plane, of the screw dislocation in copper. The 

position of the partials is indicated. 

be very different from the equivalent configurations 
derived from elasticity theory. The separation of the 
partial dislocations was 32 a (13 b, where b is the total 
Burgers vector) for the edge dislocation and 15 (6 b) 
for the screw orientation which are to be compared 
with the separations of 8 b and 2.5 b predicted by 
anisotropic elasticity theory. Also, the Peierls widths 
of the partials were much greater than would be expect- 
ed on the basis of elasticity theory. (The width of a 
partial was defined as that distance over which the 
relative displacement across the slip plane was within 

1 
f - b of the value at the centre of the partial.) For 

8 
example, the partial width of 2 b derived from elasticity 
was increased to 8 b in the edge orientation. These wide 
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partials leave only a comparatively small region, 
approximately 5 b wide, which can reasonably be 
described as a perfect stacking fault. This can be seen 
quite clearly by examining figure 1. In fact, these 
atomic simulatidri. models suggest that for such small 
separations of the partials it is better to think of the 
relative displacement across the glide plane as a 
continuous distribution of infinitesimal dislocations 
rather than two discrete cores separated by a perfect 
fault. 

The extent of dissociation derived from the simula- 
tion calculation is in reasonably good agreement with 
recent electron microscope observations using the weak 
beam imaging technique. For example, the calculated 
dissociation of 32 A for the edge dislocation agrees 
with the measured value of 38 A quoted by Stobbs and 
Sworn [35] and Cockayne, Jenkins and Ray [36] 
within the experimental error limits. An exact compa- 
rison of these results is not possible since elasticity 
theory was used in deriving the partial separation from 
the observed images. The most striking agreement, 
however, is that the simulation calculations predict a 
ratio of 2.2 : 1 for the variation in the extent of disso- 
ciation in going from the edge to the screw orientation. 
This is in close agreement with the observations of 
Stobbs and Sworn who found a value of 2.1 : 1 
whereas anisotropic elasticity theory would predict 
that it should be 3.2 : 1. This agreement is encouraging 
as it is likely that any systematic error in deducing the 
partial separations from the microscope image will be 
much smaller for this ratio than for the absolute values 
of the dissociation. 

To obviate the necessity of using elasticity theory 
to  interpret the experimental images, Perrin and 
Savino [21] calculated weak beam electron microscope 
images directly from the atomic configuration of the 
edge dislocation. Figure 3 shows the images they 

FIG. 3. - The intensity profiles of g.b = 2 weak beam images 
of the dissociated edge dislocation in copper for ~3~ = 0, 1, 2. 
The top row has been calculated from the atomic model and 
the bottom row from elasticity for the same partial separation 

of 32 fL. 

obtained from the atomic configuration using the 
weak p20] reflection with the [660] reflection set at the 
Bragg condition and at deviations w,, = 1 and 2. Also 
shown in the same figure are the images obtained using 

the anisotropic elastic displacement field for the same 
separation of the partials. From this figure it can be 
seen that the intensity peaks in the images do not 
correspond to the positions of the partials and that the 
displacement is considerably greater for the atomic 
model. 

The results they obtained from the simulation model 
for the extent of dissociation and the separation of the 
intensity peaks in the weak beam images are summa- 
rised in table 11, together with the results obtained from 
anisotropic elasticity theory for the same stacliing fault 
energy. The third row of the table shows how the 
observed separation of the intensity peaks in the image 
of 47 A leads to a predicted stacking fault energy of 
41 ergs cm-2 when analysed on the basis of elasticity 
theory. Since the image peak separation of 54 ti 
obtained from the computer simulation calculation 
agreed with the observed value, within the experimental 
uncertainty, Perrin and Savino concluded that analysis 
of the weak beam images by the simulation model 
using the Englert potential would lead to a value of the 
intrinsic stacking fault energy in copper slightly greater 
than 70 ergs cm-2 rather than the value of 41 ergs cm-2 
obtained by Stobbs and Sworn and Cockayne et al. 

Partial Peak 
Fault energy Separation Separation 

Model erg cm-2 
- - A 

- 
A 
- 

Atomic 70 32 54 
Elastic 70 20 35 
Elastic 41 38 47 

This technique of calculating weak-beam electron 
microscope images from the atomic configurations of 
dislocations obtained from computer simulation cal- 
culations promises to give one of the most direct links 
between this type of calculation and experimental 
observations. 

4.2 FRANK LOOPS. - The complex nature of the 
electron microscope images of vacancy loops formed 
by ion bombardment has led to the suggestion that the 
dislocation bounding these loops is not the simple 
1 
- [ l l l ]  Frank dislocation but that some form of 
3 
dissociation has taken place [37-391. The efficient 
conjugate gradients method of minimisation has made 
it feasible to simulate regions of crystal large enough 
(over 5 000 atoms) to study the morphology of such 
loops and Savino and Perrin 1221 have recently carried 
out a simulation of small planar vacancy clusters in 
copper in order to determine the nature of the bounding 
dislocation. The Englert et al. potential described above 
was used to define the interaction between the atoms. 
The defects which they considered were regular 
triangular and hexagonal loops with < 110 > edges 
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lying on a close-packed (1 11) plane. The triangular loop 
which contained 36 vacancies had sides 20 A long while 
the hexagonal loop containing 37 vacancies was 18 
in diameter. 

They found that the Frank dislocations bounding 
the triangular loop dissociated, on the (1 11) planes 
passing through the edges of the loop, into a stair rod 
dislocation and a Shockley partial 

1 1 1 
- [Ill] 4 3 [ l l O ]  -I- - [I121 . 
3 6 

The Shockley partials on adjacent (111) planes 
interacted to produce a stacking fault tetrahedron by 
the mechanism described by Silcox and Hirsch [40]. 
There was, however, a small amount of unfaulting at 
each corner of the tetrahedron. This can be seen in 
figure 4 which shows a projection on the face of the 

FIG. 4. - The atomic configuration across one of the faces of 
a stacking fault tetrahedron in copper. The small circles repre- 
sent atomic positions inside the face of the tetrahedron while 
the larger circles are just outside. The atom at A has unfaulted, 
B has partially unfaulted and C has remained faulted. 

tetrahedron of the (1 11) planes of atoms immediately 
inside (small circles) and outside (large circles) this 
face. Clearly, the atom at C is in the almost perfectly 
faulted position, the atom at A has unfaulted to near 
its perfect lattice position, while the atom at B is in an 
intermediate position. (Compare the relative positions 
of the atoms with the perfect lattice in the corner of the 
figure.) A similar unfaulting occurs on each of the 
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each face. 

For the hexagonal loop the principal relaxations 
were found to take place on the (1 1 I) planes which pass 
through the edges of the loop, the relaxation being on 
opposite sides of the loop plane for alternate edges of 
the hexagon. As shown in figure 5a, the intersection of 
these planes defines a rhomboid enclosing the original 
loop. Again the Frank dislocations dissociated into 
stair rods and Shockley partials but because of the 
more complex configuration associated with the 
hexagonal loops the Shockley partials were unable to 
react together to form stair rods as they did for the 
triangular loop and so they did not pass completely 
across the faces of the rhomboid. This can be seen from 
figure 5b where contours are plotted of the relative 

FIG. 5. -The dissociation of a hexagonal vacancy loop in 
copper. a) The rhomboid formed by the { 111 ) planes passing 
through the edge of the hexagonal loop. b) Contours of the 
relative displacement of atoms, in the < 112 > direction AB, 
across the face ACBD. c) The displacements of (b) plotted along 
the line AB (all distances are in units of the lattice parameter). 

displacement in the < 112 > direction AB of the 
planes on either side of the face ABCD. Since the 

1 
complete passage of a - < 112 > partial causes arela- 

6 
tive displacement of 0.4,1 (in units of the lattice para- 
meter) the 0.2 contour may be thought of as the centre 
of a rather wide Shockley dislocation. This extreme 
width can be clearly seen in figure 5c where the 
< 112 > displacement is plotted along the line AB. 
The displacement can be seen to approach the full 
Shockley partial value of 0.41 at the loop L while on 
the other side of the loop the displacement of 0.14 

1 
corresponds to the projection of the - < 110 > stair 

6 
rod on to the < 112 > direction. 
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