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THEORETICAL MODELS AND COMPUTATION 
OF FAUL T ENERGIES. 

MOMENTS DEVELOPMENTS : 
TRANSITION METALS AND COVALENT CRYSTALS 

F. DUCASTELLE 

Office National d'Etudes et de Recherches ACrospatiales, 0. N. E. R. A., 92320 ChCit~llon, France 

R6sum6. - On etudie quelques proprietks relikes a la cohksion des mktaux de transition et des 
cristaux covalents en utilisant une mkthode de moments dans le cadre de l'approximation des 
liaisons fortes. On s'intkresse en particulier a l'knergie de cohesion et a quelques propriktks 
connexes : stabilitk relative des structures cristallines et knergie de faute d'empilement. 

Abstract. - The cohesive properties of transition metals and covalent crystals are discussed 
in a tight-binding scheme by using the moments of the density of states. Particular attention 
is paid to the cohesive energy and to related properties : relative stability of crystalline structures 
and stacking fault energies. 

1. Introduction. - In general, it is very difficult 
to calculate the cohesive properties of solids : cohesive 
energy, elastic moduli, ... The reason is that all the 
interactions between the charges of the system have 
to be taken into account. In particular 't%e electron- 
electron interactions which are often treated in an 
approximate way are in principle very important here. 
Some systems are relatively simple : ionic crystals, 
Van der Waals solids. The simplicity in these cases 
lies in the fact that the total energy can be written as 
a sum of interatomic pair potentials. As a .  result, 
with realistic potentials the calculations are not too 
difficult and are in good agreement with the experimen- 
tal data [I]. On the other hand, in the case of simple 
metals (Li, Na, ...) where the electrons can be consi- 
dered as free, a rather good description of the cohesive 
properties can be given within a pseudopotential 
theory [2]. 

When dealing now with solids where the bonds 
become more and more covalent, we $re 'faced with a 
lot of difficulties. The wave functions of the valence 
electrons are very different from plane waves so that 
the pseudopotential theory is inapplicable, at least 
in its simplest form. Another well-known approach is 
then to write down the wave function as a linear 
combination of atomic orbitals. This is the LCAO or 
tight-binding method. It is at once apparent that the 
electronic energy calculated in this scheme depends on 
the crystalline structure. The situation is to be compa- 
red with the case of simple metals for which, in a first 
approximation, the electronic energy reduces to the 
energy of the free electron gas and is therefore indepen- 
dent of the structure for a given density. The main 
advantage of the tight-binding approximation is that 

it enables us to compare directly the total energy of the 
solid with the free atom energy, so that it is a good 
approximation to neglect all contributions except 
those coming from the variation of the one-electron 
energies. The problem is therefare to calculate the 
electronic spectrum. Large progresses have been made 
in the field of band structure computations during 
these last ten years, and there is no basic difficulty 
in using these calculations to obtain the electronic 
band energy E,. However it is clear that in this proce- 
dure we start from an informatipn which is too 'rich. 
All the fine details of the electronic structure are 
generally irrelevant when calculating the energy E, : 

where n(E) is the density of states and EF the Fermi 
energy..In short one can say that we are only interested 
in the integral properties of the density of states. 
Now we can get some information on n(E) from its 
moments p,, : 

,- 

The first moments are sufficient to characterize in a 
rough way a positive function like n(E). We can 
therefore simulate the behaviour of n(E) by 'using a 
function which has the same first moments, and from 
the definition,of the moments it is clear that this simu- 
lation will be mainly effective when calculating inte- 
grals over the density of states. What makes this pro- 
gram attractive in our case is that the first moments 
can easily be calculated in the tight-binding approxi- 
mation. In this way we shall avoid the intermediate 
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trip among band structure calculations. The possible 
accuracy loss will be more than compensated by the 
simplicity of the method and by other advantages. 
The first one is that the moments are obtained as 
explicit expressions in terms of the basic parameters 
which enter the theory. The discussion of the depen- 
dance of the cohesive properties on these parameters 
will therefore be easy. The second advantage is that 
in some cases we shall be able to calculate directly 
variations of cohesive energies instead of comparing 
two large quantities. Finally this method does not rely 
on the assumption of lattice periodicity so that it can 
be applied to defects and more generally to disordered 
structures as well. 

Let us now give an outline of this article. In section 2 
we recall the main features of the tight-binding approxi- 
mation. We give the general principles for the calcu- 
lation of moments and we describe some properties 
of these moments. In section 3 we apply the moments 
technique to transition metals. We calculate the 
cohesive energy and compare the different crystalline 
structures. Particular attention is paid to the HCP-FCC 
comparison, which leads to a discussion of the stacking 
fault energies in these structures. Finally the elastic 
properties of transition metals are briefly mentioned. 
In section 4 a similar discussion is given concerning 
covalent crystals such as diamond, silicon and ger- 
manium. 

, 2. Moments of the density of states in the tight- 
binding approximation. - 2 .1  THE TIGHT-BINDING 

APPROXIMATION. - We shall describe here the simplest 
form of the tight-binding approximation by assuming 
that there is a single s atomic state for each free atom. 
The extension to actual situations is easy and will be 
given in sections 3 and 4. The hamiltonian of the 
crystal is : 

whtre T is the kinetic energy and Vi the atomic poten- 
tial centred on site i. The atomic orbitals 

< r 1 i > = q(r  - R,) are assumed to besuffi- 
ciently concentrated around the nuclei i for the 
overlap < i I j > to be negligible : 

In this way the states I i > form a complete ortho- 
normal basis for the electronic states, and an eigenstate 
I $ > of H can be written as : 

We now use the fact that the states I i > are the 
eigenstates of the atomic hamiltonians Hi = T + Vi : 

where E,, is the atomic d level. From (2.1).  and ( 2 . 4 )  
we obtain : 

a =  z < i l V k l i > .  
k f i  

u gives a measure of the crystalline field at site i and 
produces a shift of the energies. The off-diagonal 
terms are given by : 

where we have neglected three-centre integrals. Becabse 
of the rapid decrease of pi j  when the distance 
I Rj - Ri I increases, we usually only take into 
account these transfer integrals between first neigh- 
bours. We therefore have a single negative integral p. 
In the case of a periodic lattice with one atom per cell, 
the eigenstates of H are given by the following Bloch 
functions : 

where N is the number of atoms. The eigenvalues ck of 
X are then given by : 

where the prime means that the summation is restricted 
to the first neighbours. 

2 .2  MOMENTS OF THE DENSITY OF STATES 131. - The 
moment of order n of the density of states, p,, is 
defined by : 

The density of states n(E) is given by : 

and finally 

Being expressed as a trace the moments p, can be 
calculated in any orthonormal basis. In particular we 
may choose the atomic basis : 
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Inserting now the identity operator I = 1 j > < j I 
in eq. (2 .12)  we get : 

J 

For a periodic lattice with one atom per cell, we 
obtain at once the first moments : 

where z is the coordination number of the lattice. 
We check that p1 = a + Eo gives the shift of the 

band. On the other hand JG gives a measure of the 
width of the band, proportional to I P I as expected. 
Let us use now centred moments (i. e. the zero of 
energy is such that Eo + a! = 0). Each factor in the 
right hand side of (2.13) corresponds to a step from 
site ip to the neighbouring site i,,,. In the particular 
model considered here a factor P is associated to each 
step, so that : 

where Pi(n) is the number of closed paths of n steps 
starting from site i. If all sites are equivalent (2 .15)  
reduces to : 

As an example, let us consider a linear chain. Eq. (2.16) 
leads to : 

It is easily checked that the same result would have 
been obtained by using the well known density of 
states of the linear chain : 

2 . 3  PROPERTIES OF THE MOMENTS. - When the 
moments are known, the density of states can in prin- 
ciple be obtained from its characteristic function 
f ( 4  : 

Actually f (x )  is the Fourier transform of n(E) ; hence : 

n(E) = - eixE f (x )  dx . 2 ' J  7t 

It  must be emphasized that the series (2.19) is not a 
perturbation series : the moments are never negli- 

gible ; as a matter of fact the integration of a particular 
term off (x )  gives a derivative of the Dirac &function. 
In the case of a linear chain, we insert the moments 
given by (2 .17)  in eq. (2 .19)  ; the characteristic func- 
tion is the Bessel function of zero order which is 
indeed the Fourier transform of the density of states. 

In periodic structures the density of states exhibit 
some singularities called Van Hove singularities, 
which are connected to the asymptotic behaviour 
of the characteristic function. Band edges are parti- 
cular singularities and they can be obtained from 
the asymptotic form of the moments. Let M be 
the largest eigenvalue in absolute value, then : 

M = lim p,'". (2 .21)  
n+m 

A more detailed discussion of the properties of 
moments is given for example in references [3] and [4]. 

2 . 4  RECONSTRUCTION OF THE DENSITY OF 

STATES [4], [5]. - When using a moments technique, 
the main problem is to be able to build up a reasonable 
density of states from the knowledge of a finite number 
of moments. Since this problem is undeterminate a lot 
of methods are available, and the best choice among 
them will depend on the problem at hand. If we have 
only a small number of moments we shall use simple 
trial functions. For example with only p, and p2 the 
choice of a gaussian is quite natural. With some 
moments more, we may try to correct the gaussian, 
and this can indeed be done through a so-called 
Edge,worth expansion. These functions of course 
cannot simulate in a realistic way the density of 
states itself, but as said before, they are probably 
convenient when calculating integrals over the density 
of states. A drawback of this method is that it leads to 
infinite tails in the density of states so that corrections 
due to.high order moments may only affect unphysical 
regions, in which case other methods can be used. For 
example if we have a guess about the position of band 
edges, we can try a family of orthonormal polyno- 
mials such as Legendre polynomials. Now the difficulty 
is that we often get spurious oscillations and regions 
of negative densities of states. In fact when dealing 
with bounded spectra, it seems that the best method 
is to use continuous fraction expansions [4] ,  [5] ,  [6] .  

There is still an important question : what is the 
error made by using for the density of states an 
approximate curve fitted to a finite number of moments. 
Actually there is no answer to this question. Bounds 
for the error can only be obtained for the integrated 
density of states N(E) : 

As for the density of states itself, we shall just mention 
here a theorem which will be used in the following [7]. 
Let f ( E )  and g(E) be two functions vanishing outside 
a given interval, and which have their n first moments 
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equal, then the function h = f - g has at least 
n + 1 zeros within the interval and the function h, 
defined by : 

has at least I? + 1 - p zeros. In the case where g is an 
approximate curve for f ,  we see that g must oscillate 
aroundf, but it is not possible to give apriori a bound 
for the amplitude of the oscillations. 

3. .Transition metals. - 3.1 INTRODUCTION. - 
Transition metals are characterized by the progressive 
filling along a series of the inner d states. In the solid 
these electrons are still well concentrated around the 
nuclei and can then be described from a basis of atomic 
d orbitals. On the other hand the s wave functions are 
much more spread out and give rise in the solid to a 
broad band of free-like electrons. The d and s bands 
overlap, and actually we can no more speak of pure d or 
s states ; s-d mixing effects are indeed most important 
when studying transport properties for example. 

As far as the cohesive properties are concerned, it is 
nevertheless clear that d electrons play the most 
important part. For example one can observe that 
there is almost one order of magnitude of difference 
between the cohesive energies of transition metals 
and those of simple metals. In the following we shall 
therefore neglect everywhere s electrons and s-d mixing 
effects, and we shall treat d electrons within the tight- 
binding approximation. 

3 .2 THE TIGHT-BINDING APPROXIMATION FOR TRANSI- 

TION METALS. - 3.2.1 Description of the model. - 
When going from our oversimplified model of 8 2.1 
to the actual case of transition metals, the main compli- 
cation which arises is due to the degeneracy of d states : 
we have now five orbitals per site. We choose the usual 
real basis : 

The crystalline field integrals a: and the transfer inte- 
grals P:,! are now defined by : 

When dealing with periodic structures the solution of 
the Schrodinger equation is given from the diagona- 
lization of a 5 x 5 matrix (if there is one atom per 
cell) which yields five bands E , , ~ ,  a = 1, ..., 5. -Then 
the first thing to do is to reduce the number of inde- 
pendent parameters. The crystalline field integrals are 
usually assumed to be very small as compared to the 

transfer ones, the reason being that they involve the 
asymptotic part of the potential of neighbouring 
atoms [8]. Moreover they are probably cancelled to a 
large extent by contributions of opposite sign [9]. In a 
first approximation we shall therefore neglect these 
integrals. Let us now consider the transfer integrals 
/If,!'. We fix the z axis along Rj - Ri. It is then easily 
realized that we only obtain three different integrals : 

Due to the form of the d orbitals (for example cp, 
points along Oz) we see also at once that : 

ddo < 0 ;  ddn > 0 ;  dd6 < 0 
(3.4') , , 

I dd6 I < ddn, I dda I . 
The general expression of P;,! for an arbitrary choice 
of axis is then obtained by performing a rotation in the 
space of d orbitals. It depends linearly on the three 
integrals, ddo, ddn and dd6, and on the director cosines 
of Rj - R,. This expression is given in reference [lo]. 

3.2.2 Moments. - The extension of eq. (2.13) is 
straightforward : 

-.. < in, A,, 1 H I il, > (3.5) 

where N is now the number of sites and 5 N the total 
number of states. In this way n(E) is normalized to 
unity : p, = 1. 

Defining then the 5 x 5 matrices Hij  by : 

we get : 

where now the trace is only taken over the degeneracy 
indices A. As in 8 2.2 the sum over site indices is equi- 
valent to a sum over closed paths, but now the contri- 
bution of a particular path depends on its geometry. 
This is to be related to the anisotropy of d states : the 
mathematical counterpart being that we deal with 
products of non commuting matrices. 

Let us apply (3.7) to the case of a lattice with one 
atom per cell. Since the shift of the band has been 
neglected pl = 0, and p, is given by : 

where the sum is performed over the first neighbours 
of site i. Let us calculate the contribution of aparticular 
term in the right hand side of (3.8). We can choose the 
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axes at will ; we take therefore Oz along R, - R ,  
and from (3.2) we obtain : 

and finally : 

Considering higher moments requires the knowledge 
of the actual crystalline structure. p, is related to the 
three-steps paths ; therefore p, = 0 in a BCC lattice 
if we only take into account the first neighbours 
(actually p2,+ , = 0 for all n in this case). Rut of course 
p3 # 0 in the FCC structure 171. 

3.2.3 Numerical values of the parameters. - First 
principles calculations of the integrals dda, ddn 
and dd6 are rather difficult. These integrals involve 
indeed the long range part of the atomic wave func- 
tions and of the potential, and it is obvious that it is 
precisely in these regions that the use of pure atomic 
functions is open to criticism. Nevertheless such a 
calculation can be tried by using for example the 
simple Slater's rules to write down the d wave func- 
tion and the atomic potential [7]. The results for 
dda and ddn are given in figure 1, dd6 being always 
negligible. (In this calculation the interatomic distance 
corresponds to a BCC structure.) 

RG. 1. - Transfer integral for the 3d series (BCC structure ; 
first neighbours). 

Another approach for estimating these integrals is to 
use the so-called interpolation schemes. The band 
structure calculations for transition metals are not 
usually done in the tight-binding approximation, but 
from more sophisticated methods which are in prin- 
ciple more reliable as far as the numerical'results are 
concerned. Generally it is found that these calculations 
can be more or less reproduced by using the tight- 
binding expressions for ~ ( k )  where the transfer inte- 
grals are fitted in the best possible way. This provides 
us with other values for dda and ddn. As a whole they 

agree with our values provided we apply to the latter 
a coefficient around 0.7. 

The general trend of the transfer integrals as pictured 
in figure 1 can in fact be explained from simple physical 
arguments. When going along a series, the ionic 
potential seen by a d electron is more and more impor- 
tant due to the weak screening provided by the other d 
electrons. As a consequence, the atomic d orbitals are 
more and more concentrated and their overlap 
decreases. When going now from the 3 d to the 4 d 
and 5 d series, the atomic orbitals are more and more 
spread out and the overlap increases. This explains the 
behaviour of the band width shown in figure 2. The 

RG. 2. -Width of the d band of transition metals. ( ~ r o m  
various calculations ; see the review by Dimmock [Ill.) 

actual bandwidth depends on ddo, ddn and on the 
crystalline structure. An empirical rule is that the 
bandwidth W is given by [9] : 

When studying FCC or HCP structures first prin- 
ciples calculations and interpolation schemes agree to 
conclude that the transfer integrals between second 
neighbours are negligible. This is no more true for 
BCC structures, in which case transfer integrals for 
second neighbours are about one half of .those for 
first neighbours. When this is taken into account one 
finds that the bandwidth as given by (3.11) is very 
similar to the FCC one. 

3.3 COHESIVE ENERGY AND RELATIVE STABILITY 

OF ' CRYSTALLINE STRUCTURES. - 3.3.1 Cohesive 
energy [8], [74. - The variation of the cohesive energy 
of transition metals with the filling of the d band is 
very regular, at least for the 4 d and 5 d series (Fig. 3). 
The variation is roughly parabolic with a maximum 
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FIG. 3. - Experimental values of the cohesive energy Ec. 

value of the order of 8 eV/atom. This can be explained 
qualitatively in a very simple way [8] ; due to the 
broadening of the electronic spectrum when going 
from the free atoms to the crystal, bonding states can 
be filled until the middle of the series is reached ; then 
antibonding states are filled and the cohesive energy 
decreases. An implicit assumption in the argument 
is that the cohesive energy can be calculated from the 
sum of the one-electron energies : 

where the factor 10 accounts for the total degeneracy 
(spin included). It  can be objected that the true elec- 
tronic contribution to Ec must be corrected by the 
electron-electron interactions which are counted twice 
in a pure Hartree scheme. Actually eq. (3.12) can be 
justified in the context of our tight-binding approxi- 
mation [8], [12]. 

Now we can estimate E,. A first simple approxima- 
tion will be to simulate n(E) by a gaussian fitted to p, : 

which leads to : 
,- 

The variation of Ec along the transition series is given 
in figure 4. (Notice that both p2 and EF are varying 
with the number of d electrons.) Let us give some 
comments on these results : 

- First it is clear that the calculated E, is too weak 
at the top of the d band. Despite its filled d band, 

FIG. 4. - Theoretical results for the cohesive energy Ec. 

copper has a rather large cohesive energy. A simple 
perturbation calculation shows that the s-d mixing 
can provide the missing terms [8]. 
- Another point is that the results are not very 

good for the 3 d series which is unfortunately the more 
interesting from a metallurgical point of view. The 
simultaneous appearance of magnetism for these 
metals suggest that correlation effects have not been 
properly taken into account. Up to now there is no 
simple method to correct these results. Among these 
metals, manganese is more particular still in all its 
cohesive properties. Nevertheless its low Ec is consistent 
with its anomalous large parameter and therefore with 
its weak transfer integrals (see Fig. 1-4). 
- Finally spin-orbit interactions which are expected 

to be rather important for the 5 d series have been 
completely neglected. 

As a whole and due to the rough approximations 
made throughout the calculations, the results are 
rather good and give a strong support to the tight- 
binding description of transition metals. 

3.3.2 Comparison of dzferent crystalline struc- 
tures 171. - 3.3.2.1 Generalities. - As shown in 
table I, transition metals crystallize in the simple 
structures BCC, FCC or HCP (an exception is manga- 
nese which exhibits several complicated structures), 
and the succession of these structures is quite regular, 
suggesting that here again the important parameter 
is the filling of the d band, Z. Because allotropic 
transformations exist for some metals below the 
melting point, variations 6Ec of cohesive energies from 
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Crystalline structures of transition metals. Mn and Fe 
are apart ; they exhibit several cubic structures 

one structure to another are expected to be rather 
weak. By using thermodynamic data, Kaufman found 
indeed that these variations are about lo-' to 10-I eV, 
which yields relative values about lo-' [13]. The 
situation seems therefore hopeless ; all the approxi- 
mations made in calculating Ec imply uncertainties 
around lo-' eV. This explains why calculations based 
on the comparison of two large values of Ec obtained 
from band structure computations are either doubtful 
or difficult [14]. Let us consider for example the FCC- 
BCC comparison ; both lattices are rather different : 
for a given atomic volume the first neighbours are not 
a t  the same distance ; the number of first neighbours 
is different ; finally second neighbours are important 
in the BCC lattice. Even at the stage of the second 
moments p2 the comparison is therefore difficult. The 
only thing to do is to check that their values are 
actually close together, which is indeed the case when 
using the numerical values given in § 3.2.4. This is 
important since it was said in 9 1 that the densities of 
states of transition metals are strongly dependent of 
the crystalline structure. The point is that the gross 
features of n(E) are not very different from one struc- 
ture to another so that the integral properties of n(E) 
(p, values for example) are not very sensitive to the 
atomic arrangement when the volume is held fixed. 

The conclusion of this section is that no convincing 
argument can be put forward to explain the particular 
stability of the BCC structure in the middle of the 
transition series. 

3.3.2.2 Comparison of the FCC and HCP struc- 
tures. - In spite of the smaller relative variation in 
cohesive energy 6Ec, the situation is better when 
comparing FCC and HCP structures. In both structures 
indeed the local environment of the atoms is very 
similar ; first and second neighbours are at the same - 
distance implying that we have not to bother about 
variations of the transfer integrals with the distance. 
Thus moments can be directly compared. In the follow- 
ing we extend the discussion to the case of any 
compact structure obtained by stacking close packed 
planes. An important topological property of these 
structures is that the numbers of closed paths of n 

steps are the same [15]. As a consequence the moments 
and the densities of states are equal for all these 
structures. When introducing the degeneracy of d 
states this result is no more true ; as explained before 
the geometry of the paths will be involved. To distin- 
guish among different structures, a path must visit at  
least three neighbouring close packed planes. This 
implies at least four steps. Thus the moments are still 
equal up to p, and we can assume that the values 
of p4 will characterize the structures. An important 
parameter is therefore 6p4 : 

A priori 6p4 depends on ddo and ddn. Yet it can be 
shown that the sign is fixed [16] : 

8p4 2 0 .  (3.17) 

We have now to calculate cohesive energies by fitting 
curves to their four first moments. This gives us 
6n(E), and the variation 6Ec : 

(To obtain (3.18) one must take into account the 
variation of E,.) From the theorem mentioned in 
6 2.4, we can now assert that 6Ec must have at least 
two zeros when filling the d band. If it has actually 
only two zeros, the positive sign of 6p4 implies that 

FIG. 5a. - Qualitative variation of GEe=Ec(FCC) - Ec(HCP) 
as a function of the filling of the d band. 

FIG. 56. - Quantitative results obtained from an Edgeworth 
expansion. 
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6Ec is positive at the bottom and the top of the band 
(Fig. 5a). Numerical results have been obtained by 
using an Edgeworth expansion for n(E), and are 
reproduced in figure 5b. The maximum value of 6Ec, 
1 6Ec I,,, - 5 x eV is in good agreement with 
Kaufman's estimates. We also find that FCC is stabi- 
lized at the edges of the band, which is indeed the 
case (see table I). 

3.3.3 Stacking fault energies in compact structures. 
- The previous calculations can obviously be extended 
to the case of stacking faults. Let us consider a parti- 
cular compact structure and define Ay4,by : 

AP4 = P4 - CL~(FCC) . (3.19) 

By looking at the paths in this structure, it is clear 
that Ap, is proportional to 6 ~ 4 ,  the coefficient 
depending on the nature and on the number of faults 
with respect to the FCC lattice. Stacking faults in the 
HCP structure are studied in a similar way. The same 
coefficient is found for intrinsic and extrinsic fauIts. 
Finally, if we assume that the variations in cohesive 
energies are proportional to Ap4, we obtain for the 
stacking fault energy y : 

where D is the number of close packed planes and p 
a coefficient whose value is 2 for intrinsic and extrinsic 
faults [7]. Using the maximum value of I 6Ec 1, we find : 

The variation of y with the filling of the d band is 
sketched in figure 6 whereas experimental values for 
NiCo and NiCu alloys are shown in figure 7 [17]. 

FIG. 6. - Qualitative variation of the stackingfault energy-: 
fault in a FCC lattice ; - - - - - : fault in a HCP structure. 

FIG. 7. - Experimental values of y for NiCo and NiCu 
alloys [17]. 

Nickel is a strong ferromagnet, i. e. the subband 
corresponding to one spin direction is full. As a 
consequence 6Ec and y must be divided by two, giving 
a value for y around 150 erg/cm2, which is not unrea- 
sonable. 

Variations Ap4 were found to be the same for 
intrinsic and extrinsic faults. Of course this property 
is no more true for higher moments, and there is no  
reason why the corresponding stacking fault energies 
should be the same. The difference must oscillate 
around zero when filling the d band, but the amplitude 
of the oscillations may be important. Actually some 
evidences of measurable differences have been reported 
recently [la]. 

3.4 ELASTIC PROPERTIES. - The model described 
in previous sections cannot be used directly for calcu- 
lating the elastic properties of transition metals. To 
see that let us introduce an uniform compression of the 
solid. The transfer integral increase ; and so does the 
cohesive energy. Thus there is no repulsive terms in 
our model. These terms would appear through a more 
detailed treatment of the contributions neglected in 
eq. (3.12). Up to now no attempt has been made to 
calculate directly this term ; this is very difficult 
indeed and a first convenient approximation is to use 
an empirical Born-Mayer repulsive interatomic poten- 
tial whose parameters are fitted in order to reproduce 
the true atomic volume and the compressibility. For a 
complete discussion we refer to [19] and we only give 
here some comments : 
- If the strength of the repulsive term is taken 

as independent of the number of d electrons, one 
finds that the compressibility and the elastic moduli 
are proportional to the cohesive energy. This i s  
roughly true as can be seen in figure 8. 
- Though quite simple the model do not reduce t o  

a model of central forces between atoms ; as a conse- 

FIG. 8. - Experimental values of the bulk modulus K. 
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quence deviations from the Cauchy relations are 
found, in good agreement with the experimental data. 
- Finally the whole scheme seems to be consistent, 

i. e. a small number of parameters is sufficient to 
explain the variations of several quantities : cohesive 
energy, bulk modulus, shear moduli, deviationsfrom 
the Cauchy relations, etc.. . 

3.5. CONCLUSION. - A lot of other problems can 
be studied in a similar way. Let us just mention the 
calculation of surfaces energies [3] and of ponctual 
defects 1201. It turns out in these cases that the broken- 
bond model is justified as a first approximation. 
Breaking a bond is roughly equivalent to an energy 
loss of 2 EJNz where N is the number of atoms. 
Unfortunately just as it is, the model cannot be applied 
to situations involving large displacements of atoms 
such as those found in dislocations, grain bounda- 
ries, etc ... ; large displacements of atoms implying 
charge transfers which must be taken into account in 
a self-consistent way. 

4. Covalent crystals. - 4.1 INTRODUCTION. - The 
tight-binding approximation has been widely applied 
to the study of covalent crystals or molecules. At 
first the validity of the method is perhaps more doubt- 
ful than in the case of transition metals. We are 
concerned here with s and p orbitals which are less 
concentrated on the atoms than the d ones. Never- 
theless, with some refinements the method can reaso- 
nably account for the electronic spectra of typical 
covalent crystals such as diamond, silicium or germa- 
nium [21]. This is mainly true for the valence band of 
these semiconductors which contains bonding states, 
the conduction band being more appropriately des- 
cribed by orthogonalized plane waves. When dealing 
with cohesive energies, we are mainly interested by the 
occupied states of the valence band and there is some 
hope that the tight-binding approximation should give 
at least good qualitative results. The simplest tight- 
binding scheme is then to build up hybridized sp orbi- 
tals in the usual way and to take only into account the 
more important o transfer integrals. This model was 
first studied by Leman [22] ; some years ago Thorpe 
and Weaire have shown that it can be successfully 
used to describe amorphous semiconductors which 
respect the tetravalent local environment 1231. 

4.2 THE LEMAN-THORPE-WEAIRE MODEL. - 
4.2.1 Description of the model. - For definiteness, 
let us consider a tetravalent crystal like diamond. We 
first define the usual hybridized sp orbitals on site i 

The orbital I i, 1 > points along a bond toward a 
first neighbour i'. On i' we define similar orbitals by 
performing an inversion ( x  -+ - x, ...) in such a way 
that the new orbital I it ,  1 > points toward 1 i, 1 >. 
To a given bond J are associated two orbitals I i, J > 
and I i', J >. The sinlplest tight-binding approximation 
is to neglect all transfer integrals but the following one : 

But here we start from two different atomic levels 
E, and Ep. With the new basis (4.  I), the intra-atomic 
integrals are given by : 

1 < i, J (  H I i, J > = - (Es + 3 E,) 
4 

1 
(4-  3) 

< i , J [ H I i , J t >  = - ( E , -  Ep) J ' Z  J .  
4 

We fix the zero of energies : E, + 3 Ep = 0, and 
finally we are left with two different negative integrals : 

4.2.2 Density of states [23], 1241. - When 
= 0, we have the atomic limit with two levels, 

E = E, and E = Ep. The opposite situation A = 0 is 
more interesting. In this case we have : 

and we have again two levels E = + /I corresponding 
to pure bonding and antibonding states. This remark- 
able property can be seen to be related to the odd 
character of the sp orbitals. Starting from each limit, 
we expect a progressive broadening of the discrete 
levels. In fact, in this model, there is always a gap. 
Numerous and various proofs of this result are avail- 
able in the litterature (see for example [23] and [24]). 
Another surprising consequence of the model is the 
persistence of discrete levels in the density of states 
associated with pure p states. Let us write the state 

I $ >  a s :  

and let us assume that : 

x u i J  = 0 for all i 
J 

(4.7) 
aiJ = f UipJ for all J . 

By inspection it is then realized that these states are 
the announced p eigenstates of H : 

Eq. (4.7) implies'3 N conditions, N being the number 
of atoms. The total number of states is 4 N (spin not 
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included) and therefore to each discrete p level is 
associated one state per atom. Finally a further ana- 
lysis show that the spectrum associated with the two 
remaining states is completely determined by the solu- 
tion of a simpler problem. Let X be the hamiltonian 
of a hypothetical system with the same lattice, but 
with a single s state I i > at each site i : 

X = Z'I i >  < i 'l 
i'#i 

(4.9) 

and let E be the eigenvalues of X, then the continuous 
spectrum of H is given by : 

E = A $ - J ~ A ~ + ~ ~ + ~ ~ A E .  (4.10) 

Therefore as expected the whole valence band contains 
one state in the atomic limit and two states in the 
covalent limit. In all cases the width of the gap is given 
by : 

g = 2 1 p - 2 A l .  (4.11) 

The model is of course oversimplified ; in a more 
realistic treatment the p levels are broadened, and 
there is a regime where the gap disappears. Yet it gives 
a clear qualitative description of the nature of the 
electronic states. 

4.3 MOMENTS [25], [26]. - Let us now use our 
general formalism and write down the moments : 

This is the Thorpe-Weaire theorem which gives a 1 
complete treatment of the degeneracy of the sp states. pn = - 4 N  i i ,  ..., i,, < Jl I I i 2 y  J2 > 
Two cases can be distinguished : J I ,  ..., J,, 

1 .  
- atomic limit Alp > - (Fig. 9a) 

2 
1 

- covalent limit A/@ < - (Flg. 9c) . 
2 

Two kinds of steps are allowed : intra-atomic steps 
associated with A, and interatomic steps associated 
with p. Hence : 

The intermediate case is described by figure 9b. Each 1 
continuous subband contains one state per atom. p = - PL /3"-' At  " 4 

(4.13) 

where P: is the the number of paths including t intra- 

A- 1 
atomic steps. The first moments are then given by : 

n - 

c In the simple model used here the information pro- 
vided by the moments is less accurate than that 
obtained directly in 5 4.2, but as previously noticed 
the moments technique can easily be generalized to 
more realistic models. In fact when dealing with actual 

3 ~ + p  36-p -d+pO - A - P  semiconductors, we are mostly interested by the 
covalent limit Alp 4 1 for which a perturbation expan- 

A 1 

I I 7 ==2 
sion can be used. Up to second order terms one finds : u p , . = ~ z n [ 1 + 3 n ' ( $ ) ~ ] ;  ~ Z , , + ~ = O  (4.15) 

p2, = fi2" would correspond to the two discrete levels - ~ + p  0 -n-p 
3A+P 

E of the covalent limit ; the corrections describe the 
36-p 

A - L broadening of these levels. -- A 4 c 4.4 COHESIVE ENERGY. - We compare the band 
energy to the energy of free atoms in the configuration 
sZ pn-l. The atomic energy is then : 

3A+ p -A+p 0 3 ~ - p  E o = 2 E , + 2 E , = 4 A .  (4.16) -*-r E 
When the spin degeneracy is taken into account, there 
is just four available states in the valence band (in the 
covalent limit) which is then full whereas the conduc- 
tion band is empty. A development of the band energy 
Eb as a function of gives : 

FIG. 9. - Sketch of the density of states in the Leman-Thorpe- 
Weaire model ; A18 = 1 : atomic regime ; A/B = 114 : covalent 

regime. 
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which yields the cohesive energy (remember that both 
A and fi are negative) : 

The first two terms in Ec give the well known balance 
between the promotion energy 4 1 A I and the bonding 
energy 4 1 j3 I. Writing E, as : 

1 
E, = - C E, (4.19) 

2 bonds 

where EB is an energy per bond : 

From the experimental values of g and A we can 
obtain an estimate of j3 and therefore of the cohesive 
energy. In table I1 the results are given for C, Si and 
Ge. As far as the order of magnitude is concerned the 
agreement with the experimental values is not too bad. 
The parameter A/! is about 0.25 which justifies the 
use of a perturbation expansion. 

Experimental values of the gap g, of I A I and Ec 
and calculated values of I P I and Ec (energies in eV) 
from reference 1261. 

4.5 ENERGY OF DEFECTS AND OF STACKING FAULTS. - 
The model of broken bonds is exact when keeping only 
the first term in (4.20). This enables us to estimate the 
energy of various defects. For example if a bond is not 
saturated, the energy EB/2 is lost, but the electron which 

escapes goes into a spn orbital. As a result the net 
energy loss is I fi I. In the same way the energy of a 
neutral vacancy is roughly equal to 4 1 1, etc ... (see 
Lannoo and Friedel [26]). 

Let us now compare the energies of different crys- 
talline structures. We know that the diamond lattice is 
a FCC lattice with two atoms per cell. The two FCC 
sublattices correspond through a translation along 
the stacking direction (1 11). Similar covalent structures 
can be obtained from any compact structure ; in parti- 
cular from the HCP structure we obtain the wiirtzite 
structure. There is a direct correspondence indeed bet- 
ween the paths in each kind of structure 1271. In parti- 
cular the number of closed paths of n steps is also the 
same for any covalent structure generated in this way. 
In the Leman-Thorpe-Weaire model, the corres- 
ponding stacking fault energy is therefore zero. This 
means that we have to introduce other parameters in 
the model, namely the transfer integrals between 
orbitals pointing along different directions. In terms 
of moments the difference between the structures will 
appear in p, which is directly related to the first self- 
avoiding paths. If we remember the discussion concer- 
ning transition metals, we can assert that the relative 
difference 6Ec/Ec will be very small, of the order 
of 1 0-3- lo-', leading to stacking fault energies 
about 100 erg/cm2, in good agreement with the expe- 
rimental data and other estimates by Chen and 
Falicov who used a pseudopotential theory [28]. 

4 .6 CONCLUSION. - Compounds semiconductors 
can also be dealt with in the previous model by intro- 
ducing an ionicity parameter 1251, [29], [30]. Clearly the 
calculations of cohesive energies become more difficult 
in this case. As a matter of fact the use of eq. (3.12) 
for calculating the cohesive energy of covalent crystals 
is nothing but a rough approximation. The justifica- 
tions which can be given in the case of transition metals 
are less convincing here mainly because we are at the 
border line of the validity range of the tight-binding 
approximation. On the other hand the advantages of 
the method are not negligible ; the method is simple 
and give quite reliable qualitative informations. 
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