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CLUSTER MODEL FOR THE ELECTRONIC STRUCTURES 
OF COMPLEX MOLECULES AND SOLIDS (*) 

K. H. JOHNSON 

Department of Metallurgy and Materials Science 
Center for Materials Science and Engineering, &lassachusetts Institute of Technology 

Cambridge, Massachusetts 02139, USA 

Rhsumh. - Un modltle << d'agglomkrat B a ktk dkveloppk pour le calcul a pviori de la structure 
electronique des molkcules complexes et des solides. Dans ce modltle, l'interst est concentre sur un 
groupe particulier d'atomes qui peut &tre une molecule complltte, une fraction de molkcule plus 
grande ou de cristal ordonnk ou dbordonne. Le groupe est dkcoupe en regions adjacentes : ato- 
mique, interatomique et extramolkculaire. L'kquation de Schrodinger, contenant un modltle de 
potentiel Hartree-Fock avec approximation statistique Xa de Slater pour l'kchange et la correla- 
tion, est resolue de maniltre self-consistente dans chaque region par le formalisme des ondes diffu- 
skes quelque peu semblable a celui developpe originellement par Korringa. Les effets de l'environ- 
nement particulier sont pris en compte par des conditions aux limites de l'agglomerat : on impose 
la continuit6 des solutions dans la region extramoleculaire aux solutions dans les regions atomique 
et interatomique sur une sphkre enfermant l'ensemble du groupe d'atomes. Aucune rkfkrence 
explicite n'est faite au thborltme de Bloch, si ce n'est par l'introduction de conditions de periodicit6 
aux limites de l'agglomerat. Les exemples suivants illustrent les applications du modltle : calcul 
auto-cohkrent sans restriction sur le spin dans les complexes de mktaux de transition, calcul dans 
un grand agglomerat des niveaux d'impuretks profondes dans les semi-conducteurs et calcul de 
la liaison chimique de groupes de certaines metallo-enzymes et proteines biologiquement actifs. 
Les fonctions d'onde et des courbes de densitk de charge illustrant la liaison chimique sont prk- 
sentees pour divers agglomkrats. 

Abstract. - A cluster model has been developed for calculating from first principles the elec- 
tronic structures of complex molecules and solids. In this model, attention is focused on a parti- 
cular cluster of atoms which may be an entire molecule, part of a larger molecule, or part of an 
ordered or disordered crystal. The cluster is geometrically partitioned into contiguous atomic, 
ilzteratomic, and extvarnolecular regions. The self-consistent-field Schrodinger equation is set up 
in each region for a model Hartree-Fock potential including Slater's Xa statistical approximation to 
exchange correlation, and the problem is solved via scattered-wave formalism somewhat similar 
to that developed originally by Korringa. The effects of the particular environment are described 
by boundary conditions on the cluster, e. g. the matching of the solutions of Schrodinger's equation 
in the extramolecular region to the solutions in the atomic and interatomic regions at an artificial 
spherical boundary surrounding the entire cluster. No explicit use is made of Bloch's theorem, 
unless through the introduction of periodic boundary conditions on the cluster. Illustrative appli- 
cations of the model to be described include : (1) self-consistent-field spin-unrestricted calculations 
on transition-metal complexes ; (2) large-cluster calculations of deep impurity levels in semiconduc- 
tors ; and (3) calculations of the chemical bonding of the biologically active prosthetic groups of 
certain metallo-enzymes and proteins. Computer generated contour maps of the electronic wave- 
functions and charge densities illustrating the chemical bonds in various clusters are also presented. 

The SCF-Xa cluster model. - The nature of the 
electronic structures of complex molecules and solids 
is central to  a wide class of problems in chemistry, 
solid-state physics, biology, and materials technology. 
Illustrative, although not exclusive, examples include : 
polyatomic molecules in the gaseous or liquid phase, 
in crystalline environments, or in aqueous solution ; 
ordered crystals with many atoms per unit cell ; 

(*) Research sponsored by the Air Force Office of 
Scientific Research, United States Air Force (AFSC), 
Contract No F 44620-69-C-0054, and in part by the Natio- 
nal Science Foundation, Grant no GP-21312, and the 
Advanced Research Projects Agency, Contract NO DAHC 
15-67-C-0222. 

impurities and defects in an otherwise perfect crystal ; 
disordered and amorphous materials ; biological 
macromolecules, and polymers. There is much current 
interest in developing quantitative theories for the 
chemical bonding and related properties of such 
systems. 

The application of quantum theory to  these problems 
depends, to a large degree, on one's understanding of 
the electronic structures of component polyatomic 
clusters which are often arranged in complex stereo- 
chemical configurations. Traditional ab initio Hartree- 
Fock self-consistent-field methods of quantum che- 
mistry, based on representing molecular orbitals as 
linear combinations of atomic orbitals (SCF-LCAO 
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methods) [I], are difficult and costly in computer time 
to implement on many-electron polyatomic systems, 
because of the necessity of having to compute many 
multicenter integrals or equivalent Hartree-Fock 
matrix elements. Simpler semiempirical LCAO-type 
molecular-orbital methods, such as those based on the 
((complete neglect of differential overlap )) (CNDO 
methods) [2], depend on the ad hoe (often not phy- 
sically justified) parametization of matrix elements and 
yield only semiquantitative results for complex mole- 
cules and crystals. Conventional band theory [3] is 
likewise difficult to apply to crystals with more than 
a few atoms per unit cell and suffers from its depen- 
dence on the assumption of lattice periodicity and on a 
reciprocal-space representation. Theories of deep 
impurity levels [4], such as those associated with 
substitutional transition-metal atoms and vacancies 
in semiconductors, require, in principle, the knowledge 
of a complete set of Wannier or Bloch wavefunctions 
for the otherwise perfect host lattice. 

Following a suggestion made originally by Slater [5], 
we have developed and applied [6]-[18] a new theo- 
retical technique for calculating, from first principles, 
the electronic structures of complex molecules and 
solids. This technique eliminates many of the afore- 
mentioned difficulties associated with more conven- 
tional methods of quantum chemistry and solid-state 
theory. It leads to an accurate description of the 
chemical bonding of molecules and solids of conside- 
rable stereochemical complexity without undue compu- 
tational effort or cost. We refer the reader of refe- 
rences 161-181 for details of the theoretical formalism. 

It is sufficient to summarize here that the method is 
based, first of all, on the division of matter into 
component polyatomic clusters. Each cluster, which 
may be an isolated polyatomic molecule, part of a 
macromolecule, or a polyatomic complex in an 
ordered or disordered solid, is geometrically partition- 
ed into contiguous I. atomic, 11. interatomic, and 
111. extrarnolecular regions (see Fig. 1). The one- 
electron Schrodinger equation is numerically inte- 
grated within each region in the partial-wave repre- 
sentation for spherically averaged and volume averaged 
potentials which include Slater's [19]-[25] Xa statistical 
approximation to exchange correlation. The wave- 
functions and their first derivatives are joined conti- 
nuously throughout the various regions of the cluster 
via multiple-scattered-wave theory (see ref. [6]-[IS]) 
somewhat similar to that developed originally by 
Korringa [26]. The effects of a particular environment 
on the cluster are described by boundary conditions, 
e. g. in the case of an isolated polyatomic molecule 
the matching of the solutions of Schrodinger7s equa- 
tion in the extramolecular region to those within the 
cluster at an artificial spherical boundary surrounding 
the cluster (see Fig. 1). This procedure leads to a set of 
rapidly convergent secular equations which are solved 
numerically for the molecular-orbital energies and 
wavefunctions. The matrix elements of these equations 

FIG. 
into 
The 

1. - Division of the MnOT cluster (in an 0-Mn-0 plane) 
I. atomic, 11. interatomic, and 111. extramolecular regions. 
Xu exchange-correlation parameters, optimized by the first- 

principles method suggested by Slater, are shown. 

are simple to evaluate in comparison with those 
characteristic of LCAO methods. In particular, there 
are no multicenter integrals. This entire numerical 
procedure is repeated, using the wavefunctions obtain- 
ed at each iteration to generate a charge density and 
new potential, until self consistency is attained. 

The scattered-wave technique requires only a small 
fraction of the computer time required by ab initio 
LCAO methods. Furthermore, it yields results which 
are in significantly better quantitative agreement with 
experiment than do either ab initio or semiempirical 
LCAO methods. For example, in conjunction with 
Slater's [22]-[25] (( transition-state )) theory of optical 
excitations, the scattered-wave model leads to an 
accurate description of the optical properties of mole- 
cules and crystals, including the effects of orbital 
relaxation. The method is practicable, moreover, 
on polyatomic systems of considerable stereochemical 
complexity, where ab initio LCAO methods are too 
difficult and costly to implement. The total energy and 
energy as a function of stereochemical geometry are 
also within the scope of the scattered-wave approach, 
using the Xa statistical total Hamiltonian as the star- 
ting point [21]-[25]. For the electronic structure of 
an ordered complex crystal, i. e. one with several or 
more atoms per unit cell (e. g. a (< molecular crystal D), 
we can assume the periodic cell to be our unit polya- 
tomic cluster. The boundary condition on the cluster 
orbitals is then just the Bloch condition, and the theo- 
retical model reduces exactly to band theory (see 
ref. [lo] and [12]). Because of the flexibility of boun- 
dary conditions and the practicality of dealing with 
reasonably large clusters of atoms, the theoretical 
formalism is readily extended to various problems in 
the electronic structure of complex materials. For 
example, since we are concentrating on the electronic 
structures of finite polyatornic clusters and are there- 
fore not dependent on the assumption of long-range 
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order, we are able to consider problems such as the 
bonding of impurities and defects in crystals and the 
electronic structures of disordered or amorphous 
materials. 

Electronic structure of a transition-metal complex 
in a crystalline environment. - As an illustrative 
application of this model to transition-metal bonding, 
we consider the electronic structure of the tetrahe- 
drally coordinated permanganate ion (Mn04) in a 
typical crystalline environment. The nature of the 
chemical bonding and related properties of MnOi 
and similar complex transition-metal ions have been 
discussed by inorganic chemists for many years [27]. 
Mn04 does not exist in the gaseous phase, but is 
stable as an anion in crystals such as KMnO,, as an 
impurity cluster in crystals like KCIO,, and in aqueous 
solution. The characteristic purple color of KMnO, 
is associated with a strong optical absorption peak at 
2.3 eV in the complementary green part of the spec- 
trum [28]. Permanganate crystals exhibit only a weak 
temperature-independent paramagnetism of the van 
Vleck [29] type, suggesting a c( closed-shell >> ground- 
state electronic structure. The similarities of the 
chemical, magnetic, and optical properties of perman- 
ganate crystals suggest that the neighboring cations 
have little effect on the chemical bonding of an MnO, 
cluster, other than providing a stabilizing electrostatic 
field. The unit cell of the orthorhombic KMnO, 
crystal, for example, can clearly be divided into four 
distinct tetrahedrally coordinated M n 0 i  molecules 
and four K+ ions [30]. In our calculations the stabiliz- 
ing field was approximated by surrounding the cluster 
with a spherical shell of charge + 1 e which does not 
overlap the nearest K +  ions and neighboring MnO, 
molecules in the KMn0, unit cell. 

The spherical boundaries of the MnOi cluster are 
illustrated schematically in an 0-Mn-0 plane in 
figure 1, including the value of the exchange-correla- 
tion scaling parameter a in each region. This parameter 
is optimized for each component atom by the first- 
principles method suggested by Slater [22]-[25], 
namely satisfying the virial theorem and matching the 
statistical total energy of the atom to the Hartree- 
Fock total energy. Using this procedure, Schwarz [31] 
has calculated values of a = 0.712 and a = 0.744 
for the Mn and 0 atoms, respectively. We then use 
these values in the corresponding atomic region I 
of the M n 0 i  cluster. For the interatomic region 11, 
a weighted average a = 0.738 is chosen (four parts 0 
to one part Mn). In the extramolecular region 111, we 
choose a = 0.744, the value appropriate for 0. In the 
SCF calculation the Xa potentials are spherically 
averaged in regions I and I11 and volume averaged in 
region 11. Spherical averaging can also be carried out 
in region 11. 

To investigate the observed non-spin-polarized 
ground state of permanganate crystals, we have 

carried out both a spin-unrestricted calculation 
(i. e. different orbitals for different spins) and a spin- 
restricted calculation. In constructing the superposed- 
atom potential used to initiate the spin-unrestricted 
SCF-Xa procedure, we assumed that all five Mn 3 d 
electrons have their spins unpaired. The spin-unres- 
tricted calculation converged in 15 iterations to the 
same non-spin-polarized cr closed-shell )) limit deter- 
mined in the spin-restricted calculation (+ 0.001 Ry). 
The latter procedure required only 8 minutes of CPU 
time on an IBM 360165 computer. 

The fully occupied and first few unoccupied orbital 
energies of Mn04, determined by the SCF-Xa cluster 
method are listed in Table I. The deepest orbitals 
(1 all2 (2 a d 2  (1 t2I6 (3 a d 2  (2 t2I6 (4 a h 2  (3 t2I6 
(5 a,)2 (4 t,)6 are Mn 1 s2 2 s2 2 p6 3 s2 3 p6 and 
0 1 s2 2 s2 levels cc chemically shifted )) from the 
SCF-Xa free-atom limits shown in parentheses in 
Table I. The principal bonding valence orbitals 
(5 t2)'j (1 e), are combinations of 0 2 p- and Mn 
3 d-like partial waves. The (6 al)2 (6 t2)6 orbitals are 0 
2 p-like, except for some hybridization with Mn 3 d- 
and 4 s-like partial waves. The highest occupied level 
(1 t,)6 is a nonbonding 0 2 p orbital. The valence- 
and highest core-lectron energy levels are also shown 
in figure 2, along with the first few unoccupied orbital 
energies (2 e)' (7 t,)O (8 t2)0 (7 a,)', and are compared 
with the SCF-Xa Mn and 0 atomic energy levels. 

One of the major accomplishments during the past 
year has been the development of a computer pro- 
gram which accurately and efficiently generates con- 

M n  Atom SCF M n 0 ;  0 Atom 
, SCF(a=0.712) Cluster S C F ( a z 0 . 7 4 4 )  

FIG. 2. - SCF electronic energy levels of an MnO; cluster in the 
stabilizing field of a crystalline environment. The energies are 
labeled according to the various irreducible representations of the 
tetrahedral (Td) symmetry group. The highest occupied level in 
the ground state is (1 t1)6. Also shown, for comparison, are the 

corresponding SCF-Xa energy levels of the free atoms. 
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tour maps of the electronic wavefunctions and charge 
densities determined by the SCF-Xa cluster method. 
This makes practical for the first time (such maps are 
very expensive to generate via L C A O  methods) the 
(( real-space D representation of theoretical chemical 
bonds in complex molecules and crystals. Several such 
contour maps are shown for the 0-Mn-0 plane of the 
MnOi cluster in figures 3-5. The 5 t, and 1 e orbital 
wavefunctions of MnOi are mapped in figures 3 and 4, 
respectively, illustrating 0 2 po-Mn 3 d and 0 2 pn- 
Mn 3 d bonding. The total valence charge density of 
Mn04 is mapped in figure 5. It should be emphasized 

1 / I 

FIG. 3. - Contour map of a normalized 5 t2 << a-bonding>> 
orbital wavefunction in an 0-Mn-0 plane of the MnO; 
cluster. Value of contour No. 1 = -0.2; value of contour 

No. 9 = + 0.2 ; contour interval = 0.05. 

\ J 
FIG. 4. - Contour map of a normalized 1 e (( a-bonding)) orbital 
wavefunction in an 0-Mn-0 plane of the MnO; cluster. Value of 
contour No. 1 = - 0.2; value of contour No. 9 = + 0.2; 

contour interval = 0.05. 

that these maps have not been generated from wave- 
functions based on linear combinations of atomic 
orbitals of the type traditionally used in Hartree- 
Fock molecular-orbital theory. They have been 
generated simply from the exact numerical partial- 
wave solutions of SchrBdinger's equation for an 
SCF-Xa model potential, the solutions being joined 
throughout the various regions of the Mn04 cluster 
by multiple-scattering theory. 

FIG. 5. - Contour map of the total valence electronic charge 
density in an 0-Mn-0 plane of the MnO; cluster. Value of 
maximum contour = 1.23. The values of succeeding contours 
decrease by a factor of two to a minimum value of 7.1 x 10-6 

(in units of electrons per cubic Bohr radius). 

The first two unoccupied levels 2 e and 7 t, listed 
in Table I and illustrated in figure 2 are principally Mn 
3 d-like orbitals. The ordering of these levels is consis- 
tent with that expected for tetrahedral geometry on the 
basis of ligand-field theory. The positions of these levels 
with respect to the occupied valence levels are critical 
for the interpretation of the measured optical proper- 
ties. The optical absorption spectrum of Mn04, 
measured for a solid solution of KMnO,, consists of 
three intense bands with maxima at 2.3 eV, 4.0 eV, 
and 5.5 eV, and a << shoulder D at 3.5 eV [28]. A 
complete theoretical analysis of the optical properties 
cannot, of course, be carried out without a quantitative 
treatment of orbital relaxation and configuration 
interaction. Nevertheless, it has recently been shown by 
Slater [22]-[25] that the difference between the Xol 
statistical total energies of the initial and final states 
of an optical transition is equal, to good approxima- 
tion, to the difference between the Xa one-electron 
energies of orbitals whose occupation numbers are 
half way between those of the initial and final states. 
To determine these orbitals, called << transition states >>, 
it is necessary for one to carry out a complete SCF-Xa 
cluster calculation for each pair of levels involved in an 
optical transition, removing one half a unit of electro- 
nic charge from the initial orbital and adding one half 
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TABLE I exchange-correlation potential in accounting for the 
optical-properties of-crystals via band theory. The 

SCF-Xa electronic energy zevels (in R~dbergs) ' f a n  visible and near-dtraviolet optical properties of many 
Mn0; cluster in a crystalline environment. Levels crystals have been quantitatively described in terms 
below the solid line are fully occupied in the ground of the difference between the Xa one-electron energies 
state ; those above the line are empty. Corresponding of bands just below and bands just above the Fermi 
((free-atom )) energy levels are shown in parenthesis. level. The theoretical optical transition energies listed 

Symmetry 
- 

7 a1 
8 t2 
7 t2 
2 e 

1 t l  
6 t2 
6 a1 
1 e 
5 t2 
4 t2 (0 2 s) 
5 a, ( 0  2 s) 
3 t2 (Mn 3 P) 
4 a, (Mn 3 s) 
2 t, ( 0  1 s) 
3 a, ( 0  1 s) 
1 t2 (Mn 2 P) 
2 a, (Mn 2s) 
1 a, (Mn 1 s) 

Energy Levels 
- 

- 0.006 
- 0.020 
- 0.350 
- 0.526 

a unit of charge to the final orbital. This procedure 
automatically includes the effects of orbital relaxation. 

In Table I1 we list the calculated energy differences 
between the initial and final SCF transition-state 
orbitals for each orbitally-allowed optical transition 
of Mn0;. Included, for comparison, are the energy 
differences between the corresponding cc unrelaxed D 
virtual orbitals and valence orbitals for the ground- 
state SCF results shown in Table I. Also included are 
the assigned experimental absorption energies. The 
two sets of theoretical transition energies are in close 
agreement. This result is consistent with Slater's 
prediction [22]-[25] that the relaxation of Xa orbitals 
should be relatively small for optical transitions bet- 
ween occupied valence-type levels and unoccupied 
levels lying immediately above. This argument also 
explains the well known success of the Xa statistical 

Theoretical and experimental optical transition energies 
(in eV) for tlze Mn04 cluster 

Unrelaxed Transition- 
SCF state Experiment 

Transition Calculation Calculation 
- - - 

("> - 
1 t l  + 2 e  2.1 2.3 2.3 
6 tz  -+2e  3.2 3.3 3.5 
1 t l  -t 7 tz 4.5 4.7 4.0 
5tz  + 2 e  5.3 5.3 5.5 

ta) See reference [28]. 

in Table I1 are in better quantitative agreement with 
experiment than are the results of semiempirical [32] 
and ab initio [33] LCAO calculations on MnO,. 
The transition-state calculation brings the 1 t, 2 e 
theoretical transition energy into c( exact )> agreement 
with the measured 2.3 eV absorption energy, although 
this accuracy may be fortuitous. Thus we interpret this 
absorption peak as due predominantly to electronic 
c< charge transfer )> between the 1 t, nonbonding 
2 p-like orbital localized on the 0 ligands and the empty 
2 e 3 d-like orbital localized on the Mn atom. 

It is perhaps surprising that the scattered-wave 
model, in conjunction with Slater's Xa method and 
transition-state theory, can lead to a reasonably 
accurate description of the chemical bonding and 
optical properties of a complex molecular cluster like 
MnO; with the expenditure of only a few minutes of 
computer time. In oontrast, the ab initio calculations 
reported in reference 1331, using both minimal and 
c( better-than-minimal )> atomic-orbital basis sets, 
required over 10 hours of computer time on a cornpa- 
rable machine. 

Electronic structure of et luminescent >> impurities 
in 11-VI compounds. - The luminescent properties 
of 11-VI compounds (e. g. ZnS and CdS) have been 
and continue to be a very active area for scientific and 
technological investigation [34]. Of importance to 
luminescence in these materials is the presence of small 
amounts of substitutional metallic impurities (called 
cc activators D), such as Cu, Ag, Au, and Mn. Specific 
impurities in specific compounds produce characteristic 
luminescent emission bands, e. g. the cc blue )> and 
c( green )) emission lines associated with Cu in ZnS. 

Although some progress has been made toward 
developing a quantitative theory of impurity-activated 
luminescence, many questions remain to be answered. 
For example, it is believed that impurity-activated 
luminescence involves electronic transitions between 
the energy bands of the host crystal and impurity levels 
lying deep within the band gap [35]. However the 
exact nature of these levels and their positions with 
respect to the valence- and conduction-band edges are 
not thoroughly understood from first principles. 

To describe how the SCF-Xa cluster model can be 
extended to this impurity problem, we consider a Mn 
atom substitutionally replacing a Zn atom in the tetra- 
hedrally coordinated 11-VI compound ZnS. Following 
a suggestion originally made by Birman 1361, we then 
focus our attention on a 17-atom cluster MnS,Zn,, 
consisting of a Mn atom tetrahedrally coordinated by 
four S atoms, each of which completes its tetrahedral 
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bonding with three Zn atoms (see Fig. 6). For a model 
of the << unperturbed )), impurity-free ZnS crystal, 
we consider a 17-atom cluster ZnS,Zn,, with a Zn 
atom at the center. The effects of the rest of the crystal 
lattice are described in terms of the contribution of the 
crystal potential to the Xoc atomic potentials within the 
cluster and in terms of a potential in the <( extramo- 
lecular )) region spherically averaged with respect to 
the center of the cluster. Schrodinger's equation is then 
solved self consistently throughout the various regions 
of the cluster by the scattered-wave theory outlined 
earlier. 

FIG. 6. - 17-atom cluster centered on an impurity atom (e. g. 
Mn, Cu, or Ag replacing Zn) in a ZnS crystal. 

Preliminary applications of this model indicate that 
a ZnS,Zn,, cluster is indeed large enough to yield 
electronic energy levels which correspond approxi- 
mately to the valence and conduction bands of a ZnS 
crystal and which are separated by an energy gap that 
is a good approximation to the actual band gap. 
Comparison of these energies with those calculated 
for the MnS,Zn,, cluster leads to the approximate 
positions of the Mn impurity levels with respect to the 
bands of the host crystal. The cluster energy levels 
(determined for a preliminary exchange-correlation 
parameter a = 1) are illustrated in figure 7. Also 
shown for the same Xci parameter are the free-atom 
energy levels. Comparison of figure 7 with figure 2 
suggests that the S 3 p efectrons play very much the 
same role in determining the valence bands of a ZnS 
crystal as do the 0 2 p electrons in determining the 
valence levels of an Mn04 cluster in a KMnO, 
crystal. The conduction bands are determined princi- 
pally by the 4 s electrons and (( virtual )> 4 p orbitals of 
the Zn atoms. The localized Mn impurity levels 
correspond to 3 d-like orbitals which are completely 
analogous to the 2 e and 7 t, levels shown in figure 2 
for the Mn04 cluster, except that they are partially 
occupied in the ZnS crystal. On the basis of these 
cluster calculations and transition-state theory, we 
find that electronic transitions between these impurity 
levels and the bands of the host crystal are consistent 
with the observed optical absorption and luminescent 
emission spectra of Mn-doped ZnS. These transitions 
involve electronic << charge transfer >) between the Mn 

Central ZnS,Zn12 
Atom Cluster 
SCF (a.1) 

Zn4p 

MnS,Zn12 Ligand 
Cluster Atoms 

SCF(a21) 

2 e - .- It, 
6t2 

FIG. 7. -Comparison of the electronic energy levels of a 
ZnS4Znlz cluster with those of a MnS4Znlz impurity cluster in a 
ZnS crystal, for an Xol exchange-correlation parameter ol = 1. 
Also shown are the corresponding free-atom energy levels. The 
levels labeled 7 t2 and 2 e for the MnS4Znlz cluster and their 
positions with respect to the <( valence-band D edge (level 7 t2) 
for the ZnSdZnl2 cluster should be especially noted. These levels 
correspond to localized Mn 3 d-like orbitals and may be com- 
pared with the 7 tz and 2 e levels shown in figure 1 for an MnO; 

cluster. 

atom and ligands, as do the principal optical transi- 
tions of Mn04. 

Applications of our cluster method to transition- 
and noble-metal impurities in 11-VI compounds are in 
progress. In addition to determining electronic energy 
levels in the fashion described above, we are generating 
contour maps of the wavefunctions and charge densi- 
ties, similar to those in figures 3-5, showing for the 
first time the nature of the chemical bonding between 
the impurity and the host crystal. Crystal defects such 
as vacancies are also within the scope of the model. 
This work will be reported in detail in later publi- 
cations. 

Electronic structure and biological function of metal 
atoms in enzymes and proteins. - We turn now to 
another very interesting application of the SCF-Xol 
cluster model which we are currently investigating, 
namely the chemical bonding of transition metals and 
other metals which are the biologically active centers of 
certain enzymes and proteins. Among these, the most 
familiar perhaps are the iron-containing hemopro- 
teins, including hemoglobin, myoglobin, cytochrome, 
catalase, and peroxidase. Enzymes and proteins 
containing the metals cobalt (e. g. vitamin B,,), zinc 
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(carboxypeptidase), copper (ceruloplasmin), and ma- 
gnesium (chlorophyll) are also recognized to be bio- 
catalysts of important metabolic processes occurring 
in the living cells of animals and plants. 

The biological functions of these systems cover a 
wide spectrum, varying with the particular metal and 
organic ligands with which it interacts (see ref. [37]). 
Nevertheless, there are gross similarities in the stereo- 
chemical geometries of the active centers of these 
macromolecules, e. g. approximate octahedral, tetra- 
hedral, or square-planar coordination of a central 
metal atom with the organic ligands of a porphyrin- 
like prosthetic group or other molecular sub-unit 
(e. g. see Fig. 8). A quantitative theoretical analysis of 
the electronic structures and chemical bonding of 
these metals in their local molecular environments 
should lead to a better understanding of the nature 
of their biocatalytic and transport functions. Since 
complex c< charge-transfer >> and spin-polarization 
effects between the metal atom and ligands are undoubt- 
edly important in these systems, conventional ligand- 
field and semiempirical molecular-orbital theories are 
not appropriate. Ab initio Hartree-Fock LCAO theory 
is also inappropriate because of the vast computa- 
tional effort which would be required to obtain a 
reliable description of the electronic structure. 

To illustrate how the more practical SCF-Xci cluster 
technique is applied to this problem we consider in 
greater detail the structure of the hemoglobin protein 
macromolecule (see Fig. 8), whose biological function 
is well known to be the transport of oxygen between 
the lungs and tissues. Protein molecules are long- 
chain polymers consisting of amino-acid residues 
called polypeptides, each protein being characterized by 
a specific sequence of amino acids along the polypep- 
tide chains. The hemoglobin molecule consists of 
574 amino acids (-- 10,000 atoms) organized into 
four intricately wound chains [38]. A prosthetic heme 
group is tucked into each of the four chains. The heme 
complex consists of an iron atom coordinated by four 
nitrogen-atom Iigands which are part of a planar 
molecule known as protoporphyrin (see Fig. 8 a).  
A fifth nitrogen ligand <( below >> the plane of the 
porphyrin attaches the heme complex to the protein 
chain via the amino acid histidine (see Fig. 8 b). 
The corresponding position (( above >> the plane of the 
porphyrin is of major importance to the biological 
function of hemoglobin, for it is here that an oxygen 
molecule (or other ligands such as carbon monoxide) 
can be attached to the iron atom for transport between 
the lungs and tissues. If an oxygen molecule attaches 
itself by only one of the oxygen atoms, then this atom 
together with the five nitrogen ligands are in six-fold 
coordination with respect to the central Fe atom 1391. 
It has also been suggested that the 0, molecule may be 
joined symmetrically to the heme by both 0 atoms, 
leading to a seven-fold geometry [40]. From steric 
considerations, some conformational changes of the 
heme complex during deoxygenation can be expected, 
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FIG. 8. - a) Protoporphyrin heme complex in hemoglobin ; 
b) attachment of the heme complex to the polypeptide chain of 

the hemoglobin protein via the amino acid histidine. 

including a small displacement of the Fe atom out of 
the plane of the porphyrin [41]. 

Although the nature of the electronic structure of 
the heme complex before and after oxygenation and 
as a function of conformation is a more difficult 
problem than the non-biological examples described 
earlier, it is well within the scope of the SCF-Xa 
cluster method. For our initial model of the heme 
complex we have chosen a 18-atom cluster consisting of 
the central Fe atom, five N atoms (four in the porphy- 
rin plane and one (( below )> the plane), and the ring 
of twelve nearest porphyrin C atoms centered on the Fe 
atom (see Fig. 8). In oxyhemoglobin the 19th position 
((above )) the porphyrin plane is occupied, symmetri- 
cally or asymmetrically, by the 0, molecule. In deo- 
xyhemoglobin this position is vacant. The SCF-Xa 
potentials are constructed and the Schrodinger solved 
self-consistently for the atomic, interatomic, and 
extramolecular regions of the cluster in essentially the 
same fashion described earlier. We model the 0, 
vacancy in deoxyhemoglobin in terms of (< empty M 
diatomic regions in which only the contributions of 
the Xci potentials of neighboring atoms are superposed. 
For oxyhemoglobin the contributions of the 0 atomic 
potentials are included in these regions. Thus we can 
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directly compare the electronic energy levels and 
charge densities of the heme cluster before and after 
oxygenation and as a function of geometry within 
the same theoretical framework. 

A variety of experimental techniques, leading to 
information about the magnetic state of the heme 
complex, have been applied to hemoglobin and 
myoglobin, including magnetic susceptibility, electron 
paramagnetic resonance, Mossbauer absorption, and 
nuclear magnetic resonance. It has been established 
that the heme group is paramagnetic in deoxyhemo- 
globin and diamagnetic in oxyhemoglobin, suggesting 
spin pairing upon oxygenation [42]. One can therefore 
carry out SCF-Xa calculations on the heme cluster 
in spin-unrestricted form, as we described earlier for 
the example of the Mn04 cluster. Magnetic hyperfine 
parameters can be calculated and contour maps of the 
charge and spin densities throughout the cluster can be 
generated for comparison with experiment. 

Discussion. - It is well known that the limitations 
of applying LCAO methods to complex molecules and 
solids are the size of the basis sets and the number 
of multicenter integrals or equivalent Hartree-Fock 
matrix elements. In the SCF-Xcl cluster model, which is 
also a first-principles technique, there is no basis-set 
problem because we are numerically integrating 
Schrodinger's equation for an Xa potential. There are 
no multicenter integrals, and the model is practicable 
in both spin-restricted and spin-unrestricted forms for 
polyatomic systems of considerable stereochemical 
complexity. Applications of the SCF-Xa cluster tech- 
nique to free polyatomic molecules, molecules and 
impurities in crystals, and biological macromolecules 

are continuing at M. I. T, and the University of 
Florida. 

Thus far, our applications of the SCF-Xcl cluster 
method to polyatomic molecules and solids have been 
concerned with the generation of one-electron energies 
and wavefunctions. While a one-electron analysis leads 
to a quantitative description of many important chemi- 
cal and physical properties (e. g. charge densities, 
chemical shifts, magnetic and optical properties), it is 
also very useful to attempt to determine the total 
many-electron energy. In particular, a knowledge of 
the ground-state total energy as a function of stereo- 
chemical geometry is essential to developing a quanti- 
tative understanding of molecular or crystal stability 
(e. g. the binding energy, force constants, etc.) and 
the nature of chemical reactions. Therefore, we have 
recently extended our cluster computer programs to 
permit the calculation of the total energies within the 
framework of the Xcl statistical total Hamiltonian 
(see ref. [21]-[25]). Calculations of the total energies of 
polyatomic molecules and clusters as a function of 
interatomic distance and bond angle are in progress. 
Since a rapidly convergent set of spin-orbitals is 
obtained, perturbation theory can be systematically 
used, when necessary, to improve the accuracy of the 
theoretical model. 
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