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MANY-BODY THEORY FOR HYPERFINE EFFECTS
IN ATOMS AND MOLECULES (*)

by T. P. DAS (**), C. M. DUTTA and N. C. DUTTA
Department of Physics, University of Utah, Salt Lake City, Utah 84112, U. S. A.

Résumé. — Comme exemple d’application de la théorie des perturbations a N-corps, nous
avons étudié le probléme de la constante Jup de couplage spin-spin nucléaire indirect dans la
molécule HD. L’ensemble complet d’états utilisé est exactement celui des états des spectres discret
et continu de I'ion moléculaire H3, avec la méme séparation internucléaire que pour la molécule Ha.
Notre valeur calculée de Jup par le mécanisme d’interaction de contact de Fermi est 42,57 Hz,
alors que la plus récente valeur expérimentale est de 42,7 - 0,7 Hz.

Abstfract. — Results of application of linked-cluster many-body pertubations theory to atomic
hyperfine constants are reviewed and as a specific example of the application of this procedure
to molecular systems, we have studied the problem of the indirect nuclear spin-spin coupling
constant Jup in HD molecule. The complete set of states used were the exact bound and conti-
nuum states of Hj molecular ion, with the same internuclear separation as for the H. molecule.
Qur calculated value of Ju 1 through the Fermi contact interaction mechanism is + 42.57 Hz as

compared to the most recent experimental value of 4 42.7 -*. 0.7 Hz.

1. Imtroduction. — The linked-cluster many-body
perturbation theory (LCMBPT) approach, also referred
to in the literature as the Brueckner-Goldstone
procedure [1, 2] has been demonstrated in recent years
to be greatly successful in handling the influence of
many-body effects on atomic properties. Our expe-
rience [3, 4] with this procedure leads us to single out
four particularly attractive features of this procedure
in the treatment of atomic properties :

(D) It eliminates the element of choice that is
crucial for variational procedures. Thus, in handling a
system described by a Hamiltonian JC, once a neigh-
boring Hamiltonian JC; is chosen for which one can
determine a complete set of states, the perturbation
Hamiltonian is definite, namely AJC = JC — JC,. One
is then assured that if a perturbation procedure is
carried out involving all orders in AJC one must end up
with the correct energy and wave functions for the
system.

{(2) The analysis of perturbation terms through the
use of diagrammatic techniques permits insight into
the physical meaning of various terms. With some
practice, one then develops some intuition about those
diagrams that are most important for the order of
accuracy desired. This is of great help when the total
number of contributing diagrams is rather large.

(3) The third feature which we find very advanta-
geous is the fact that one utilizes perturbation theory,

(*) Supported by the National Science Foundation.
(**) Invited talk presented by this author.

dealing with small numbers, rather than the difference
of large ones. This is particularly important when
dealing with small energies related, for example, to
polarizabilities and hyperfine constants. In the latter
case, the core-polarization contribution from an
inner shell in the LCMBPT approach is calculated
directly instead of as the difference of large numbers
as in the Unrestricted Hartree-Fock procedure.

(4) The fourth attractive feature of the LCMBPT
procedure is that once one has a basis set for a certain
choice of JCq, the same set may be used not only for
studying correlation energies and other properties of
the isolated atom including many-body effects, but also
to study properties of the atom in the presence of
external fields.

The success of the LCMBPT procedure in the
treatment of hyperfine effects in isolated atoms can be
seen from Table 1 and Table II. Table I presents the
experimental results for the isotropic hyperfine cons-
tants a (in the hyperfine spin-Hamiltonian a L.J) in a
number of atoms, together with the predictions of
restricted Hartree-Fock theory. The difference bet-
ween the experimental and restricted Hartree-Fock
constants are referred to as the experimental correla-
tion contributions to a. In Table II, we list the values
of a that we have calculated using LCMBPT theory
employing a starting Hamiltonian involving what is
known in the literature [1, 2] as a V¥~ potential. As
an additional point of comparison, the theoretical and
experimental correlation contributions are listed next
to each other in the last two columns. The most remar-
kable example is the case of phosphorus where RHF
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Atom and nucleus
3He(’S)
Li(*S,/2)
"Li(*P3,5)

Y B(*Py,5)
YN(*S;3,2)
23Na(231/2)
SP(*S;,,)

T. P. DAS, C. M. DUTTA AND N. C. DUTTA

TABLE 1

Table of experimental values and expected correlation
contributions for atomic hyperfine constants

R. H. F. value a Expt. value a
(MHz) (MHz)
447923 (" 4493.1342 (9
285.01 () 401.756 (%)

— 64702 (% — 3.073 (%)
70.685 8 (%) 73.347 (M)
0 10.45 ()
622.644 (%) 885.813 1 ()
0 55.055 691 (%)

Expt. correlation
contribution
Aa (MHz)
13.90
116.75
— 3.397
2.661
10.45
262.8
55.055 691

(®) SKLAREW (R. C.) and CALLAWAY (J.), Phys. Lett. (Netherlands), 1967, 25A, 177.
(*) Goobings (D. A.), Phys. Rev., 1961, 123, 1706.

() Value obtained from clementis analytic wave-functions (Supp. to IBM. J. Res. and dev., 1965, 9, 2) using 2.688 5 nuclea

magnetons for the magnetic moment of 11B.
(%) Lek (T.), DutTA (N. C.) and Das (T. P.), Phys. Rev., 1970, 1A, 995.
(¢} Rosner (S. D)) and Piekin (F. M.), Phys. Rev., 1970, A 1, 571.
(1) KuscH (P.) and Taus (H.), Phys. Rev., 1949, 75, 1477.
(5) BroG (K. C.), Eck (T. G.) and WipEr (H.), Phys. Rev., 1967, 153, 91,
(M) WEsseL (G.), Phys. Rev., 1953, 92, 1581.
() ANDERSON (L. W.), PrpkiN (F. M.) and Bairp (J. C.), Jr. Phys. Rev., 1959, 116, 87.
(i) LaMBeRT (R. H.) and PrekIN (F. M.), Phys. Rev., 1962, 128, 198.

TABLE I1

Comparison of many-body theoretical and experimental
atomic hyperfine constants

Theoretical value Experimental Correlation

Atom (MHz) value (MHz) theory expt.
3He(®S)) 4491.87 ( 4493.134 2 12.64 13.90
TLi(%S4,5) 399.05 () 401.756 114.04 116.75

Li(*P;,,) — 2.7906 (%) - 3.073 - 3.6796 3.397
14N(*S5,2) 10.488 (9 10.45 10.488 10.45
23Na(*S;,2) 872.8 (%) 885.813 1 249.8 262.81
*IP(*S;,0) 49.80 (O 55.055 691 49.80 55.055 691
1B(*Ps,,) 73.91 (®) 73.347 3.21 2.661

(*) Dutra (N. C.), MAaTsuBARA (C.), Pu (R. T.) and Das (T. P.), Bull. A. Phys. Soc., 1968, 13, 392,

(") CHANG (E. S.), Pu(R. T.) and Das (T. P.), Phys. Rev., 1968, 174, 1.

(¢) Lyons (J. D.), Pu (R. T.) and Das (T. P.), Phys. Rev., 1969, 178, 103.

(9 Durra (N. C.), MaTsuBara (C.), Pu (R. T.) and Das (T. P.), Phys. Rev., 1969, 177, 33.

(®) Lee(T.), DutTa (N. C.) and Das (T. P.), Phys. Rev., 1970, A 1, 995.

() Dutta (N. C.), MatsuBara (C.), Pu (R. T.) and Das (T. P.), Phys. Rev. Letters, 1968, 21, 1139.
(¢) Ropgers (1. E.), Dutta (C. M) and Das (T. P.), Bull. Am. Phys. Soc., 1970, 15, 1521,

theory leads to a = 0 and UHF theory [5] as well as
one-electron exchange core polarization diagrams from
LCMBPT calculations lead to a wrong sign compared
to experiment. It is only after the contributions from
the correlation diagrams in the LCMBPT procedure
are included that one gets agreement in sign and
fairly close agreement in magnitude with experiment.

In addition to the atoms listed, a number of others
have also been studied. Oxygen atom in the ground *P
state has been studied by Kelly [6]. In this case, as
well as in the excited state (*°P) of lithium atom [7]
and ground state (*P) of boron atom studied in our
group, since the atoms do not have spherical symme-

try, one gets in addition to the contact term, a contri-
bution to the total magnetic hyperfine constant {ron
the classical electron-nuclear dipolar and nuclear elec-
tron orbit interactions and also the nuclear quadrupole
interaction term. Additionally, among the transition
metal atoms, the isotropic hyperfine constant in irom
atom (Fe’7) in its ground state has been studied b
Kelly (reported at this Conference) and we arc
studying neutral manganese atom and Mn**t ion

The overall conclusions from Tables I and II and
the other systems that have been studied recently
is that the evaluation of diagrams involving two
orders in AJ = J — J,, and certain ladder dia-
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grams which can be summed to all orders, is sufficient
to excellent answers for the hyperfine constants
of isolated atoms.

This success of the LCMBPT procedure for isolated
atom properties has prompted us to apply it to more
complicated problems of hyperfine effectsin interacting
atoms and in molecules. In the work [8] on hyperfine
effects of interacting atoms, we have been concerned
with the problem of the hyperfine constant of hydrogen
atom interacting with helium and neon atoms at long
range. This analysis is important for the understanding
of hyperfine pressure shifts of hydrogen atom in atmos-
pheres of rare gases [9, 10]. As a by-product of these
calculations, we have obtained [8] the van der Waals
energy of hydrogen, helium, and neon atomsinteracting
among themselves and with one another. In the
field of hyperfine effects of molecules, we have studied
the problem of the indirect spin-spin interaction
constant between proton and deuteron in HD mole-
cule. This interaction is of great importance from a
chemical point of view because of the insight it pro-
vides into the electronic structure of molecules, yet it
is not quantitatively understood in the relatively
simple system, HD molecule, through the use of
conventional perturbation or variational proce-
dures [11]. Due to limitations of time, we shall not be able
to discuss the first topic, namely the hyperfine inter-
action of interacting atoms, but refer the readers to
our published work in this field. The second topic,
namely the problem of spin-spin interaction in HD
molecule will be the main theme of our talk.

II. Spin-spin interaction in HD molecule. —
The indirect spin-spin interaction between nuclei A4
and B is described by the spin-Hamiltonian,

JCS = JIA‘IB .

For HD molecule, the experimental alue of J is known
to be + 42.7 4+ 0.7 Hz. The explanation of the origin
of J was first given by Ramsey and Purcell [13] who
showed that the spin-Hamiltonian JCg resulted from
the second-order hyperfine energy of the molecule
composed of one order each in the hyperfine Hamilto-
nian for the two nuclei. They used conventional
perturbation theory in their work which involves the
energies and wave-functions of the excited states of
the molecule including continuum states. Unfortuna-
tely, such information is never available except for
a few of the low lying excited states and so one cannot
use this procedure for quantitative analysis. In our
work, using the LCMBPT procedure [I, 2], we have
revived the perturbation approach in a form that meets
this major difficulty of conventional perturbation
theory, What is done is to use a zero order Hamilto-
nian J¢, which is close to the actual Hamiltonian J€ for
the molecule, but for which the complete set of
eigenstates can be obtained exactly in contrast to the
situation for J€. The procedure for calculating J is then
one of handling a perturbation problem involving three
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perturbation Hamiltonians, namely AJ = J — X,
and the hyperfine Hamiltonians of the two nuclei.

For speed of convergence of the perturbation
approach, it is necessary that the basis states chosen
(and hence JC;) describe the behavior of the charge
densities near the nuclei reasonably well. In particular,
a one-center choice [14] for J€; might be expected to be
rather inadequate for the present problem since this
would require the inclusion of very high angular
momentum states to properly describe the charge
densities near the nuclei. With this consideration
in view, the Hs molecular ion Hamiltonian was
chosen for J¢,. This has the dual merit of providing
a basis set that i1s both exactly derivable and has the
desirable cusp behavior at the nuclei.

The procedure of calculation follows broadly the
same lines as that employed in handling atomic
systems subject to external perturbations [4, 8]. The
starting Hamiltonian, corresponding to two non-
interacting electrons in the H; molecular framework
is given by : (in atomic units)

= 1, 1 1 )
X, = (— =V - - 1

° igl 2 i T &
leading to AJ€ = 1/ry,. The net perturbation Hamil-
tonian J&' composed of AJC and the hyperfine interac-

tion terms is then
1
' =— 4+ ; + I, @)

Fya

where the J€, (A = H or D) are given by

2
sy = T M Ea 2 Y 1 86000 ()

3 e i=1
uy and p, representing the Bohr magneton and nuclear
magnetic moment of nucleus A and I, and S; the
nuclear and electron spin operators. Following the
usual linked-cluster perturbation approach, the total
energy correction AE is given by

the suffix L and other quantities in eq. (4) having their
usual meanings in linked-cluster perturbation theory
[3, 4, 8]. The indirect nuclear spin-spin interaction
Hamiltonian has the form :

o = yp Iy Iy . (5)

The spin-spin coupling constant Jyp can be evaluated
by equating the expectation values of both sides
of eq. (5) over the nuclear spin states with magnetic
quantum numbers My =1; and Mp =1, The
expectation value AEy, of the left hand side of
eq. (5) corresponds to the energy derived from eq. (4),
keeping one order in J€;; and one order in J&, and all
possible orders in 1/r;,. In diagrammatic represen-
tation, the corresponding diagrams must contain
the J€;; and J€;, vertices once, whereas the 1/r;, vertex
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can occur any number of times. Since the spin Hamil-
tonian is isotropic it is sufficient to work with only
the z-component term in eq. (5).

For the one electron basis set for the diagrammatic
evaluation of AE,p, we have utilized the exact bound
and continuum states of JE,, which correspond to
the H; molecular ion wave functions for internuclear
distance R = 1.4 a. u. These are expressed in the form

D4 1y @) = AL M(p) ™ (6)

where A1) and M (i) are functions of the elliptic
coordinates, 4 = (r;y + rp)/R, it = (r,y — rpY/R and
ry and ryp are the distances of the ith electron from H
and D nuclei. For the bound states, we have to deter-
mine both the energy eigenvalues as well as the eigen-
functions described by eq. (6) [15]. This requires the
solution of the appropriate second order differential
equations for A,(4) and M,(p) which are coupled by
the energy and a separation constant A4;. The eigen-
values and eigenfunctions for some of the lower
bound states are already available in the literature [15].
For the higher bound states, only eigenvalues are
available [16] and we had to solve the necessary
continued fraction equations to obtain A4; and M(u).
The functions A,(1) were obtained by solving the
corresponding differential equation numerically [17].
For the continuum states, the eigenvalues are, of
course, & = k?/2. Again A; and M,(u) are obtained
by solving the requisite continued fraction equations
and A1) through numerical integration of the
corresponding differential equation [17].

The diagrams involved in the calculation of AEy,
are similar in form to those one encounters in the
perturbation of atomic systems in an external field [4].
The external fields in the present molecule are the

()

{Eb -0

(b) (C) (d)
SR D
(e) () (%)
FiG. 1.

T. P. DAS, C. M. DUTTA AND N. C. DUTTA

hyperfine fields of nuclei at the sites of the electron:
For the hyperfine operators J¢; and € we hav
utilized in the diagrams wiggly lines terminating wit
dots. The lowest order diagram for the preser
calculation is of second order involving one ordec
each in JC; and J€,. The higher orders involve add:
tional vertices associated with 1/r,,. In referring to th
order of the diagrams in the rest of the paper we sha’
only count the number of 1/r,, vertices. Figure | show
the zero order and all of the first order diagram:
Figure 2 gives the important second order diagram:

(t)

(%)

FiG, 2.

The most time consuming aspect of the evaluation o
diagrams was the calculation of matrix element
associated with the vertices. The hyperfine vertice
require only the density of the wave-functions at th
nuclei and are straightforward. However, the matri:
elements of —/r ,, particularly those involving conti
nuum states, require special attention, since elliptic
coordinates are involved. We have utilized the proce
dure developed by Rudenberg [I8] for variationa:
molecular bound state calculations. Our compute
program was checked by comparing the result:
obtained with available tables for molecular bound
state two-electron integrals. The integration in #
over the continuum states also involves a somewhat
different multiplying factor than in atomic work [20]
because of the use of elliptic coordinates, namely

2 2 ro
() ], e
The second order diagram (1a) represents the contri-

bution to Jy, from two non-interacting electrons in the

ground state of H3 molecular ion with the internuclear
separation of R = 1.4 a. u. The third order dia-
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grams (16)-(1g) can be divided, for purposes of nomen-
clature and physical understanding of their origin,
into three classes. Class 1 is described by diagrams (156)
and (lc¢), class Il by diagrams (ld) and (le) and
class 11 by diagrams (1f) and (1g). The first two classes
represent the influence of the passive interaction
between electrons which converts the electronic

wavefunctions from those of the H> molecular ion to
the H, molecule. The only reason we make a distinc-
tion between these classes is that in the literature on
the LCMBPT approach to atomic problems the
class I1 diagrams have usually been associated with
hole-hole and hole-particle ladders. The class III
diagrams represent the influence of scif consistency
effects on the perturbed states produced by the
nuclear moments. In figures (2a)-(2j), we have given the
representative fourth order diagrams. A number of
these diagrams ((2a)-(2f)) can be generated by
combinations of the classes of diagrams described
under third order, while the others ((2g)-(2)) can not
be obtained in this way and occur for the first time in
fourth order. Thus, diagrams (2a) originate from a
combination of class I with itself. Diagram (2b) arises
from a combination of classes [ and [I, diagrams (2¢)
from class 11 with itself, diagrams (24) from combina-
tion of classes I and III, diagrams (2e¢) from combina-
tion of classes Il and IIlI and diagrams (2f) from
class TII with itself. Diagrams (2g) to (2j) arc thosc
which originate for the first time in fourth order. This
list completes all classes of diagrams that can appear
in fourth order.

The contribution to Jyp from all these various
diagrams are listed in Table [1I. The major contribu-
tion arises from the second order diagram (la) with
severe cancellation from the gerade and ungerade
particle states. In evaluating this diagram as well as all
the rest, bound excited states nsg, for n =2 =35,
npo, for n=2-6, nde, for n =3 -6, nl o,
for n = 4 and 5 (1 and / referring to the united atom
designation) were utilized. The continuum  states
include / values ranging from 0 to 11. As a result of
substantial cancellations between gerade and ungerade
excited states, the convergence in / was slow for the
continuum contributions and we had to go up to
! = 11. The bound excited states were found to contri-
bute about 34 ¢/ of the contribution from diagram (la).
while the rest ol the contiibution came from the conti-
nuum states. This result indicates that in any varia-
tional or other types of calculation of spin-spin
interaction constants, care must be taken to include the
influence of continuum states either directly or indi-
rectly.

For the third order diagrams, we have listed the
combined contribution from gerade and ungerade
particle excitations. It should be mentioned here that,
in contrast to the sccond order case. the bound state
contribution in both third and fourth orders represent
larger percentages of the total contribution. The reason
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TasLe JII

Contributions front various diagrams to Jyp,

Order of perturbation Diagrams Contributions
Second order (1 a) gerade — 385.65
(I a) ungerade 458.67
Subtotal 73.02
Third order (?) (1b) —~ 74,76
(1o — 10.16
(1d) — 47.60
(le) 47.41
(1f) 24.90
(lg) 24.90
Subtotal — 3531
Fourth order (*®) (2a) 12.54
(2b) 11.33
(20¢) - 120
(24d) — 4208
Qe 4.60
21 48.38
2¢g) - 120
(2 h) 2.70
21) 3.02
) — 3323
Subtotal 4.86
Grand total 42.57
Experiment 42.7 + 0.7

[a] All possible combinations of the gerade and ungerade
excited states were included.

[b] Al the entries listed under the fourth order diagrams refer
not only to the diagrams shown in Fig. 2, but also all other
diagrams of similar topologies obtained by various possible
time orderings of interaction vertices and interchange of the
latter between hole and particle lines.

for this is the presence of the low lying 2pa, state which
can appear more than once as excited state, corres-
pondingly increasing the contribution of the diagrams
concerned through the accompanying small cnergy
denominators. The net third order contribution is seen
to cancel out almost one half of the second order
contribution. The lourth order contribution is much
smaller but significant. [t can be noticed from Table 111
that the contributions of all the classes of diagrams
in the third and fourth orders are in general compa-
rable. Consequently, there is no particular class of
diagrams that justifies inclusion to all orders through
the familiar laddering process. In particular, dia-
grams (ld) and (le) are the usual progenies of the
hole-particle, hole-hole ladders of atomic problems,
where one starts from the Hartree-Fock V¥ ™! appro-
ximation. In the present situation, these two diagrams
are seen to make nearly equal and opposite contribu-
tions and it is not justificd to carry out the hole-hole
and hole-particle laddering separately. Physically,
this near cancellation of (1) and (le) corresponds 1o
the comparable influence of the passive interaction
between electrons on the energies of hole und particle
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states, leaving their difference nearly the same. The
net result we obtained for the contact contribution
to Jyp is 42.57 + 2 Hz. The confidence limit quoted
is actually rather conservative. We have made rough
estimates of the contributions from the typical dia-
grams of fifth order which originate from various
classes of the fourth order diagrams and found their
contribution well within the assumed limit. The addi-
tional flexibility in the confidence limit was introduced
to take account of certain approximations made in the
évaluation of the diagrams, namely neglect of the contri-
butions from / > 11, from non-o particle states in the
fourth order diagrams, and particle-particle triple and
quadruple continuum excitation matrix elements. The
inclusion of the effects of these factors would have
required an excessive amount of computer time.
Our final result compares quite favorably with the
experimental value of + 42.7 + 0.7 Hz [12]. The expe-
rimental value of course includes small additional
contributions from the dipole-dipole and orbital
interactions [21]. These latter effects can also be

T. P. DAS, C. M. DUTTA AND N, C, DUTTA

evaluated by the same LCMBPT procedure that we
have used here for the contact contribution.

I1I. Conclusion. — We have presented an exampl
of the practical application of the LCMBPT approact
to systems more complicated than isolated atoms
The procedure used here is expected to be equally
successful for other properties of H, molecule, parti-
cularly those properties which depend crucially on the
neighborhood of the nucleus such as the electric
field-gradient at the deuteron and the spin-rotatior
constant. Another method that we are presently
exploring involves a one-center united atom model [22]
This has been found to be quite successful for the
correlation energy and electric field at the fluorinc
nucleus of HF molecule and its success for hyperfinc
properties is being tested currently.

Acknowledgements., — The authors are gratefu!
to T. S. Lee, J. Rodgers, and D. Ikenberry for helpfui
discussions and suggestions.
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